School research in heritage education: Science teacher’s specialised knowledge in a field trip
Mireia Illescas-Navarro 1 * , Raquel Romero-Fernández 1, Paula García-Viso 1, Elisa Arroyo-Mora 1
More Detail
1 Departamento de Didácticas Integradas, University of Huelva, Spain
* Corresponding Author

Abstract

The purpose of the research was to detect elements of specialised knowledge of an experimental sciences teacher in the design and implementation of a field trip in Secondary Education in order to draw pedagogical implications in initial teacher training. We developed a case study of a science teacher who carried out an educational intervention about heritage through a field trip. An interview and the field book design were used as instruments for data collection. Data were analysed using content analysis guided by a theoretical and methodological model of the specialized knowledge of teachers who teach experimental sciences, mathematics and social sciences. The results showed that the teacher has in-depth Content Knowledge, which allows him to characterise the river, an ecosystem and research in a heritage environment, as well as Pedagogical Content Knowledge using specific resources, methodological strategies and activities to teach science in Secondary Education. From these results, a series of implications have been drawn, such as the importance of an in-depth content knowledge related to topics to be taught and an interdisciplinary teacher training.

Keywords

References

  • Adúriz-Bravo, A., & Izquierdo-Aymerich, M. (2009). A model of scientific model for science teaching. Electronic Journal of Research in Science Education, 4(1), 40–49.
  • Aguilera, D. (2018). Field trip as a didactic resource to teach sciences. A systematic review. Revista Eureka sobre Enseñanza y Divulgación de las Ciencias, 15(3), 3103. https://doi.org/10.25267/Rev_Eureka_ensen_divulg_cienc.2018.v15.i3.3103
  • Akosah, E. F., Arthur, Y. D., & Obeng, B. A. (2024). Unlocking the nexus: Teacher variables effect on learners’ mathematics achievement via structural equation modeling. Journal of Pedagogical Sociology and Psychology, 6(3), 95–110. https://doi.org/10.33902/jpsp.202429145
  • Álvarez-Piñeros, D., Vásquez-Ortiz, W. F., & Rodríguez-Pizzinato, L. A. (2016). The field trip, a possibility in initial teacher training. Didáctica de las Ciencias Experimentales y Sociales, 31, 61–78. https://doi.org/10.7203/dces.31.8431
  • Amils, R., & Fernández-Remolar, D. (2014). The IPBSL team Río Tinto: A geochemical and mineralogical terrestrial analogue of Mars. Life. 4(3), 511–534. https://doi.org/10.3390/life4030511
  • Anderson, D., & Clark, M. (2011). Development of syntactic subject matter knowledge and pedagogical content knowledge for science by a generalist elementary teacher. Teachers and Teaching, 18(3), 315–330. https://doi.org/10.1080/13540602.2012.629838
  • Aydın, E., & Mıhladız-Turhan, G. (2023). Exploring primary school teachers’ pedagogical content knowledge in science classes based on PCK model. Journal of Pedagogical Research, 7(3), 70–99. https://doi.org/10.33902/JPR.202318964
  • Azam, S. (2020). Locating personal pedagogical content knowledge of science teachers within stories of teaching force and motion. Eurasia Journal of Mathematics Science And Technology Education, 16(12), em1907. https://doi.org/10.29333/ejmste/8941
  • Ball, D., Thames, M. H., & Phelps, G. (2008). Content knowledge for teaching. What makes it Special? Journal of Teacher Education, 59(5), 389–407. https://doi.org/10.1177/0022487108324554
  • Behrendt, M., & Franklin, T. (2014). A review of research on school field trips and their value in education. International Journal of Environmental and Science Education, 9(3), 235–245.
  • Braund, M., & Reiss, M. (2006). Towards a more authentic science curriculum: The contribution of out‐of‐school learning. International Journal of Science Education, 28(12), 1373–1388. https://doi.org/10.1080/09500690500498419
  • Brenner, M. E. (2012). Interviewing in educational research. In J. L. Green, G. Camilli, & P. B. Elmore (Eds.), Handbook of complementary methods in education research (pp. 357–370). Routledge.
  • Buma, A. M., Sibanda, D., & Rollnick, M. (2023). Exploring the development of the quality of topic specific pedagogical content knowledge in planning: the case of grade 8 natural sciences teachers. International Journal of Science And Mathematical Education, 22(2), 399–418. https://doi.org/10.1007/s10763-023-10355-0
  • Cañal, P., Pozuelos, F. J., & Travé, G. (2005). Proyecto curricular investigando nuestro mundo. descripción general y fundamentos [Curriculum project investigating our world. overview and rationale]. Díada.
  • Carrillo, J., Climent, N., Montes, M., Contreras, L. C., Flores, E., Escudero, D., Vasco, D., Rojas, N., Flores, P., Aguilar, Á., et al. (2018). The mathematics teacher's specialised knowledge (MTSK) model. Research in Mathematics Education, 20, 236–253. https://doi.org/10.1080/14794802.2018.1479981
  • Chaille, C. M., & Davis, S. M. (2015). Integrating math and science in early childhood classrooms through big ideas: A constructivist approach. Pearson.
  • Charles, R. I., & Carmel, C. A. (2005). Big ideas and understandings as the foundation for elementary and middle school mathematics. Journal of Mathematics Education, 7(3), 9–24.
  • Couso (2014). De la moda de “aprender indagando” a la indagación para modelizar: una reflexión crítica [From the trend of ‘learning by inquiry’ to enquiry for modelling: a critical reflection]. En M. A. De las Heras, A. Lorca, B. Vázquez, A. Wamba, & R. Jiménez (Eds.). Investigación y transferencia para una educación en ciencias: Un reto emocionante [Research and transfer for science education: An exciting challenge] (pp. 1–28). Servicio de Publicaciones Universidad de Huelva.
  • Cuenca, J. M., Martín-Cáceres, M. J. & Estepa, J. (2021). Teacher training in heritage education: good practices for citizenship education. Humanities & Social Sciences Communications, 8(62), 1‒8. https://doi.org/10.1057/s41599-021-00745-6
  • De la Vega, E. & Iranzo, E. (2021). Water heritage and landscape of l’Horta Sud as resources for a didactic proposal. Cuadernos Geográficos, 60(2), 192‒213. https://doi.org/10.30827/cuadgeo.v60i2.15950
  • Dereje, E. W. (2023). The effect of inquiry based technology integration on conceptual and procedural geometry knowledge of preservice mathematics teachers. Journal of Pedagogical Sociology and Psychology, 5(4), 12-27. https://doi.org/10.33902/jpsp.202321592
  • Domènech-Casal, J. (2018). Project-Based Learning for STEM. Didactic components for ScientificCompetence. Ápice. Revista de Educación Científica, 21(2), 29–42. https://doi.org/10.17979/arec.2018.2.2.4524
  • Education Ministry (2022). Royal Decree 217/2022, March 29, establishing the organization and minimum teachings of secondary education. Official Bulletin of the State.
  • https://www.boe.es/eli/es/rd/2022/03/29/217/con
  • Estepa, J. (2019). Investigar para innovar: el caso del Ámbito de Investigación de las sociedades actuales e históricas [Research to innovate: the case of the Research Domain of current and historical societies]. REIDICS. Revista de Investigación en Didáctica de las Ciencias Sociales, 4, 5–19.
  • Gabardón, J. F. (2005). La enseñanza del patrimonio. Propuestas educativas en torno al patrimonio local [Heritage education. Educational proposals on local heritage]. Investigación En La Escuela, 56, 87–93.
  • García-Carmona, A., Vázquez-Alonso, Á., & Manassero-Mas, M. A. (2011). Present status and perspective of nature of science teaching: a review of teachers’ beliefs and obstacles. Enseñanza de las ciencias: revista de investigación y experiencias didácticas, 29(3), 403–412. https://doi.org/10.5565/rev/ec/v29n3.443
  • García-Viso, P., Climent, N. & De las Heras, M. A. (2024). Conocimiento didáctico del contenido del profesorado de ciencias y matemáticas [Science and mathematics teachers' didactic content knowledge] [Paper presentation]. Actas de XII Congreso Internacional Multidisciplinar de Investigación Educativa, Universidad de Granada.
  • García-Viso, P., De las Heras, M. A., & Climent, N. (2024). El conocimiento especializado del profesor de ciencias experimentales y de matemáticas. Comparativa de elementos de conocimiento didáctico del contenido [Experimental science and mathematics teachers' specialised knowledge. Comparison of elements of didactic content knowledge.]. In V. Arufe & R. Rodríguez (Eds.), Actas 7º Congreso Mundial de Educación EDUCA 2024 (pp. 553–557). Educa 2024.
  • García-Viso, P., Galán, L., De las Heras, M. A., & Climent, N. (2023). El conocimiento especializado del profesor de ciencias (experimentales y sociales) y de matemáticas [The specialised knowledge of the science (experimental and social) and mathematics teacher]. Internal R&D Project document (ProyExcel_00297: Junta de Andalucía).
  • Garrido, A., & Couso, D. (2017). La modelización en la formación inicial de maestros: ¿qué mecanismos o estrategias la promueven? [Modelling in initial teacher education: what mechanisms or strategies promote it?]. Enseñanza de las Ciencias: revista de investigación y experiencias didácticas, 2017, 137–144. https://ddd.uab.cat/record/184701
  • Garriga, N., Pigrau, T., & Sanmartí, N. (2012). Cap a una pràctica de projectes orientats a la modelització [Towards a modelling-oriented project practice]. Ciències: revista del professorat de ciències de Primària i Secundària, 21, 18–28.
  • Gläser-Zikuda, M., Hagenauer, G., & Stephan, M. (2020). The potential of qualitative content analysis for empirical educational research. Forum: Qualitative Social Research, 21(1), 20. https://doi.org/10.17169/fqs-21.1.3443
  • Goes, L. F. & Fernandez, C. (2023). Evidence of the development of pedagogical content knowledge of chemistry teachers about redox reactions in the context of a professional development program. Education Sciences, 13, 1159. https://doi.org/10.3390/educsci13111159
  • Illescas-Navarro, M., González-Castanedo, Y., De las Heras, M. A., & Climent, N. (2025). What knowledge do science teachers need to teach the ecosystem concept using a river? Didactic implications to promote good practices in secondary school. European Journal of Science and Mathematics Education, 13(1), 27–40. https://doi.org/10.30935/scimath/15873
  • Illescas-Navarro, M., Romero-Fernández, R., García-Viso, P., & Arroyo-Mora, E. (2024). Conocimiento especializado de un docente de ciencias experimentales en una salida de campo [The specialised knowledge of an experimental science teacher in a field trip]. In B. Berral, J. A. Martínez, C. R. Fernández & J. J. Victoria (Eds.), Investigación para la mejora de las prácticas educativas desde una perspectiva holística [Research for the improvement of educational practices from a holistic perspective] (pp. 2981–2992). Dykinson.
  • Julien, M. P., & Chalmeau, R. (2022). Field trips in French schools: teacher practices and motivations. International Journal of Science Education, 44(6), 896–920. https://doi.org/10.1080/09500693.2022.2057612
  • Kapelus, P. (2002). Mining, corporate social responsibility and the "community": The Case of Rio Tinto, Richards Bay Minerals and the Mbonambi. Journal of Business Ethics, 39, 275–296. https://doi.org/10.1023/A:1016570929359
  • Kisiel, J.F. (2005). Understanding elementary teacher motivations for science fieldtrips. Science Education, 89, 936–955. https://doi.org/10.1002/sce.20085
  • Kyle, J. E., Pedersen, K., & Ferris, F. G. (2008). Virus mineralization at low pH in the Rio Tinto, Spain. Geomicrobiology Journal, 25(7–8), 338–345. https://doi.org/10.1080/01490450802402703
  • Landolfi, E. (2023). Scientific literacy as part of the science-for-all movement. International Journal of Didactical Studies, 4(1), 20382. https://doi.org/10.33902/ijods.202320382
  • Liguori, L., & Noste, M. I. (2007). Didáctica de las ciencias naturales: enseñar ciencias naturales [Didactics of natural sciences: teaching natural sciences]. Homo Sapiens.
  • Llambí, L. (2012). Transformation processes of rural areas in Latin America: the challenges of interdisciplinarity. Eutopía. Revista De Desarrollo Económico Territorial, 3, 117–34. https://doi.org/10.17141/eutopia.3.2011.1022
  • Llull-Peñalba, J. (2010). Playing in Historic Sites: two practices ofleisure education and heritage interpretation in Alcalá de Henares. Pulso: Revista De Educación, 33, 131–159. https://doi.org/10.58265/pulso.5015
  • Luís, M. (2021). O conhecimento especializado do professor quando ensina tópicos de biologia [Teachers' specialised knowledge when teaching biology topics] [Unpublished Doctoral dissertation]. University of Huelva. http://hdl.handle.net/10272/20211
  • Magnusson, S., Krajcik, L., y Borko, H. (1999). Nature, sources and development of pedagogical content knowledge. In J. Gess-Newsome & N.G. Lederman (Eds.), Examining pedagogical content knowledge (pp. 95–132). Kluwer Academic Publishers.
  • Marake, M., Jita, L. C., & Tsakeni, M. (2022). Science teachers' perceptions of their knowledge base for teaching force concepts. Journal of Baltic Science Education, 21(4), 651–662. https://doi.org/10.33225/jbse/22.21.651
  • Maseko, B., & Khoza, H. C. (2021). Exploring the influence of science teaching orientations on teacher professional knowledge domains: a case of five Malawian teachers. Eurasia Journal of Mathematics Science And Technology Education, 17(12), em2041. https://doi.org/10.29333/ejmste/11333
  • Mills, L. A., & Katzman, W. (2015). Examining the Effects of Field Trips on Science Identity. In D. G. Sampson, J. M. Spector, D. Ifenthaler & P. Isaías (Eds.). Proceedings of the IADIS International Conference Cognition and Exploratory Learning in Digital Age (pp. 202–208). International Association for the Development of the Information Society.
  • Nathan, M. J., & Petrosino, A. (2003). Expert blind spot among preservice teachers. American Educational Research Journal, 40(4), 905–928. https://doi.org/10.3102/00028312040004905
  • Nixon, R. S., Toerien, R. R., & Luft, J. A. (2019). Knowing more than their students: Characterizing secondary science teachers' subject matter knowledge. School Science and Mathematics, 119(3), 150–160. https://doi.org/10.1111/ssm.12323
  • Novak, J., & Gowin, D. (2002). Learning how to learn. Cambridge University Press.
  • Park, S. (2005). A study of PCK of science teachers for gifted secondary students going through the National Board certification process [Unpublished doctoral dissertation]. University of Georgia, Athens.
  • Park, S., & Chen, Y. (2012). Mapping out the integration of the components of pedagogical content knowledge (PCK): Examples from high school biology classrooms. Journal of Research in Science Teaching, 49(7), 922–941. https://doi.org/10.1002/tea.21022
  • Park, S., & Oliver, J. S. (2008). National Board Certification (NBC) as a catalyst for teachers' learning about teaching: The effects of the NBC Process on Candidate Teachers' PCK development. Journal of Research in Science Teaching, 45(7), 812–834. https://doi.org/10.1002/tea.20234
  • Perona, J. J. V., Portolés, J. J. S., & Sanjosé-López, V. (2017). Pedagogical content knowledge in the sciences: state of the art. Cadernos de Pesquisa, 47(164), 586–611. https://doi.org/10.1590/198053143915
  • Ponce de Leon, I. (2025). CUDOs to the teachers: Using Merton’s norms of scientific practice to guide lessons in critical thinking. Journal of Pedagogical Sociology and Psychology, 7(1), 18-32. https://doi.org/10.33902/jpsp.202525475
  • Poti, J. G., Dudu, W. T., & Sebatana, M. J. (2022). A South African beginner natural sciences teacher's articulated PCK-in-practice with respect to electric circuits: A case study. Eurasia Journal of Mathematics Science And Technology Education, 18(10), em2161. https://doi.org/10.29333/ejmste/12426
  • Pujol, R. (2003). Didáctica de las ciencias en la educación primaria [Didactics of science in primary education]. Síntesis.
  • Rahmawatı, R. F., Imaduddin, M., Haqiqi, A. K., Fikri, A. A., Fawaida, U., Prasetyo, D. R., & Faikhamta, C. (2020). Assessing psychosocial outdoor learning environment of pre-service science teachers through the field trip experiences. Participatory Educational Research, 7(2), 135–150. https://doi.org/10.17275/per.20.24.7.2
  • Rebar, B. M. (2012). Teachers' sources of knowledge for field trip practices. Learning Environment Research, 15, 81–102. https://doi.org/10.1007/s10984-012-9101-y
  • Reynolds, W. M., & Park, S. (2021). Examining the relationship between the educative teacher performance assessment and preservice teachers' pedagogical content knowledge. Journal of Research in Science Teaching, 58(5), 721–748. https://doi.org/10.1002/tea.21676
  • Rudmann, C. L. (1994). A review of the use and implementation of science field trips. School Science and Mathematics, 94(3), 138-141. https://doi.org/10.1111/j.1949-8594.1994.tb15640.x
  • Santisteban, A., González-Monfort, N., & Pagès, J. (2020). Critical citizenship education and heritage education. In E. J. Delgado-Algarra & J. M. Cuenca (Eds.), Handbook of research on citizenship and heritage education (pp. 26–42). IGI Global.
  • Schwab, J. J. (1978). Science, curriculum and liberal education. University of Chicago Press.
  • Shulman, L. S. (1986). Those who understand: knowledge growth in teaching. Educational Researcher, 15(2), 4–14. https://doi.org/10.3102/0013189X015002004
  • Shulman, L. S. (1987). Knowledge and teaching: Foundations of the new reform. Harvard Educational Review, 57(1), 1–22. https://doi.org/10.17763/haer.57.1.j463w79r56455411
  • Sofianidis, A., & Kallery, M. (2021). An insight into teachers' classroom practices: the case of secondary education science teachers. Education Sciences, 11(10), 583. https://doi.org/10.3390/educsci11100583
  • Stake, R. (1995). The art of case study research. Sage.
  • Stolare, M., Ludvigsson, D., & Trenter, C. (2021) The educational power of heritage sites. History Education Research Journal, 18(2), 264–79. https://doi.org/10.14324/HERJ.18.2.08
  • Strat, T. T. S., Henriksen, E. K., & Jegstad, K. M. (2023). Inquiry-based science education in science teacher education: a systematic review. Studies in Science Education, 60(2), 191–249. https://doi.org/10.1080/03057267.2023.2207148
  • Subramaniam, K., Asim, S., Lee, E. Y., & Koo, Y. (2018). Student teachers' images of science instruction in informal settings: a focus on field trip pedagogy. Journal of Science Teacher Education, 29(4), 307–325. https://doi.org/10.1080/1046560X.2018.1452531
  • Tal, T., & Steiner, L. (2006). Patterns of teacher–museum staff relationships: School visits to the educational centre of a science museum. Canadian Journal of Science, Mathematics and Technology Education, 6, 25–46. https://doi.org/10.1080/14926150609556686
  • Thanh, N. C., & Thanh, T. T. (2015). The interconnection between interpretivist paradigm and qualitative methods in education. American Journal of Educational Science, 1(2), 24–27.
  • Trabajo, M., & Cuenca, J. M. (2020). Student concepts after a didactic experiment in heritage education. Sustainability, 12(7), 3046. https://doi.org/10.3390/su12073046
  • Usak, M., Uygun, H., & Duran, M. (2022). The effects of science teachers' pedagogical content knowledge on students' attitudes toward science and their achievement. Journal of Baltic Science Education, 21(4), 694–705. https://doi.org/10.33225/jbse/22.21.694
  • Valadares, J., & Moreira, M. (2009). A teoria da aprendizagem significativa: Sua fundamenteção e implementação [The theory of meaningful learning: Its foundation and implementation]. Edições Almedina.
  • Van Doorsselaere J. (2021). Connecting sustainable development and heritage education? an analysis of the curriculum reform in flemish public secondary schools. Sustainability, 13(4), 1857. https://doi.org/10.3390/su13041857
  • Van-Dijk, E. M., & Kattman, U. (2007). A research model for the study of science teachers PCK and improving teacher education. Teaching and Teacher Education, 23, 885–897. https://doi.org/10.1016/j.tate.2006.05.002
  • Willis, J. (2007). Foundations of qualitative research: Interpretive and critical approaches. Sage.
  • Yin, R. K. (2018). Case study research and applications: design and methods. Sage.

License

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.