Inquiry-based learning and the pre-requisite for its use in science at school: A meta-analysis
Manuela Heindl 1 *
More Detail
1 Technical University Dresden, Dresden, Germany
* Corresponding Author


The purpose of this meta-analysis was to determine the pre-requisite for and the efficacy of inquiry-based learning to improve academic performance in contrast to traditional lessons. Randomised studies with pre- and post-test design with control and treatment groups were filtered with a priori inclusion criteria and analysed in Review Manager (2014). Out of the results in ERIC 13 studies were found, which show that inquiry-based learning can be more effective when the students and the teachers are well-prepared (Messner, 2009). The results of this meta-analysis of the studies between 2011 and 2017, as well as the theory in the literature, show that there is a positive effect size towards its regular implementation in primary (d= 0.67) and secondary schools (d = 0.81). Therefore, there should be more inquiry-based learning lessons taught in science and in other school subjects and the pre-requisite according to Messner (2009) have an effect of d = 0.88.



  • Abd-El-Khalick, F., BouJaoude, S., Duschl, R., Lederman, N. G., Mamlok-Naaman, R., Hofstein, A., & Tuan, H. (2004). Inquiry in science education: International perspectives. Science Education, 88(3), 397–419.
  • Abdi, A. (2014). The Effect of Inquiry-based Learning Method on Students’ Academic Achievement in Science Course. Universal Journal of Educational Research, 2(1), 37–41.
  • Barak, M., Ashkar, T., & Dori, Y. J. (2011). Learning science via animated movies: Its effect on students’ thinking and motivation. Computers & Education, 56(3), 839–846.
  • Barthlow, M. J. (2011). The Effectiveness of Process Oriented Guided Inquiry Learning to Reduce Alternate Conceptions in Secondary Chemistry. Liberty University, VA. Retrieved from
  • Bastiaens, T. J., Schrader, C., & Deimann, M. (2016). Lehren und Lernen in der Wissensgesellschaft. Hagen: Fakultät für Kultur- und Sozialwissenschaften - FernUniversität in Hagen. Studienbrief 33080.
  • Chang, K.-E., Sung, Y.-T., & Lee, C.-L. (2003). Web-based collaborative inquiry learning. Journal of Computer Assisted Learning, 19(1), 56–69.
  • Chiang, T. H. C., Yang, S. J. H., & Hwang, G.-J. (2014). An Augmented Reality-based Mobile Learning System to Improve Students’ Learning Achievements and Motivations in Natural Science Inquiry Activities in Natural Science. Educational Technology & Society, 17(4), 352–365.
  • Cohen, J. (1988). Statistical power analysis for the behavioral sciences. Hillsdale, NJ: Erlbaum.
  • Dijk, A. M., & Lazonder, A. W. (2016). Scaffolding students’ use of learner-generated content in a technology-enhanced inquiry learning environment. Interactive Learning Environments, 24(1), 194–204.
  • Ergül, R., Simsekli, Y., Calis, S., Özdilek, Z., Göcmencelebi, S., & Sanli, M. (2011). The effects of inquiry-based science teaching on elementary school students’ science process skills and science attitudes. Bulgarian Journal of Science and Education Policy, 5(1), 48–68.
  • ERIC. (2017). ERIC - Education Resources Information Center. Retrieved October 20, 2017, from
  • Erpenbeck, J., & Rosenstil, L. (2003). Handbuch Kompetenzmessung. Stuttgart: Schäffer-Poeschl Verlag.
  • Fischer, J., Mitchell, R., & Alamo, J. (2007). Inquiry-Learning with WebLab: Undergraduate Attitudes and Experiences. Journal of Science Education and Technology, 16(4), 337–348.
  • Friedman, A. M., & Heafner, T. L. (2007). “You think for me, so I don’t have to”. Contemporary Issues in Technology and Teacher Education, 7(3), 199–216.
  • Furtak, E. M., Seidel, T., Iverson, H., & Briggs, D. C. (2012). Experimental and Quasi-Experimental Studies of Inquiry-Based Science Teaching: A Meta-Analysis. Review of Educational Research National Research Council [NRC], 82(3), 300–329.
  • Gagné, R. M., & Driscoll, M. P. (1988). Essentials of learning for instruction. New York: Prentice Hall.
  • Gasser, P. (2014). Neue Lernkultur: eine integrative Didaktik. Aarau: Bildung Sauerländer.
  • George, D., & Mallery, P. (2003). SPSS for Windows step by step: a simple guide and reference, 11.0 update. Boston: Allyn and Bacon.
  • Google Scholar. (2017). Google Scholar. Retrieved October 20, 2017, from
  • Guisti, B. M. (2008). Comparison of Guided and Open Inquiry Instruction in a High School Physics Classroom. Brigham Young University. Retrieved from
  • Hammann, M., Phan, T. H., & Bayrhuber, H. (2008). Experimentieren als Problemlösen. In Kompetenzdiagnostik (pp. 33–49). Wiesbaden: VS Verlag für Sozialwissenschaften.
  • Hasan, A. S. H. (2012). The effects of guided inquiry instruction on students’ achievement and understanding of the nature of science in environmental biology course. Dubai: British University. Retrieved from
  • Hashim, A., El, T., Ababkr, S., Sid, N., & Eljack, A. (2015). Effects of inquiry based science teaching on junior secondary school students’ academic achievements. SUST Journal of Humanities, 16(1), 156–169.
  • Hetmanek, A., Knogler, M., & CHU. (2017). Forschendes Lernen. Retrieved from
  • Higgins, J., Thompson, S., Deeks, J., & Altmann, D. (2003). Measuring inconsistency in meta-analyses. BMJ, 327(7414), 55–60.
  • Higgins, J., & Green, S. (2011). Summary of meta-analysis methods available in RevMan. Retrieved March 10, 2018, from
  • Hinton, P. R., Brownlow, C., McMurray, I., & Cozens, B. (2004). SPSS explained. London: Routledge.
  • Huber, L. (2003). Forschendes lernen in Deutschen hochschulen. In A. Obolenski & H. Meyer (Eds.), Forschendes Lernen (pp. 15–36). Bad Heilbrunn: Klinkhardt.
  • Kirschner, P. A., Sweller, J., & Clark, R. E. (2006). Why minimal guidance during instruction does not work. Educational Psychologist, 41, 75–86.
  • Kuhn, D., & Pease, M. (2008). What needs to develop in the development of inquiry skills? Cognition and Instruction, 26(4), 512–559.
  • Luborsky, L., Singer, B., & Luborsky, L. (1975). Comparative studies of psychotherapies. Archives of General Psychiatry, 32(8), 995–1008.
  • Maxwell, D. O., Lambeth, D. T., & Cox, J. T. (2015). Effects of using inquiry-based learning on science achievement for fifth-grade students. Asia-Pacific Forum on Science Learning and Teaching, 16(21), 1–31.
  • Meij, H., Meij, J., & Harmsen, R. (2015). Animated pedagogical agents effects on enhancing student motivation and learning in a science inquiry learning environment. Educational Technology Research and Development, 63(3), 381–403.
  • Messner, R. (2009). Forschendes Lernen aus pädagogischer Sicht. In R. Messner (Ed.), Schule forscht (pp. 15–30). Hamburg: Ed. Körber-Stiftung.
  • Meyer, H. (2003). Skizze eines Stufenmodells zur Analyse von Forschungskompetenzen. In A. Obolenski & M. Meyer, HilbertMeyer (Eds.), Forschendes Lernen (pp. 99–117). Bad Heilbrunn: Klinkhardt.
  • Moher, D., Cook, D. J., Eastwood, S., Olkin, I., Rennie, D., & Stroup, D. F. (1999). Quality of Reporting of Meta-analyses. Lancet, 354(9193), 1896–900.
  • National Academies of Sciences Engineering and Medicine. (2000). Inquiry and the National Science Education Standards. Washington, D.C.: National Academies Press.
  • Njoroge, G. N., Changeiywo, J. M., & Ndirangu. (2014). Effects of inquiry-based teaching approach on Secondary School Students’ achievement and motivation in Physics in Nyeri County, Kenya. International Journal in Academic Research in Education Review, 2(1), 1–16.
  • Omokaadejo L. (2015). Effects of inquiry method on academic performance of chemistry students in senior secondary schools in Kaduna state. Ahmadu Bello Univsersity Zaria. Retrieved from
  • PRIMAS. (2011). Promoting inquiry-based learning in mathematics and science education across Europe Policy. Freiburg. Retrieved from
  • Rathgeb, T., & Behrens P. (2014). KIM-Studie. Stuttgart. Retrieved from
  • Reitinger, J. (2013). Forschendes Lernen. Immenhausen bei Kassel: Prolog-Verlag.
  • Ressing, M., Blettner, M., & Klug, S. J. (2009). Systematische Übersichtsarbeiten und Metaanalysen. Deutsches Ärzteblatt International, 106(27), 456–463.
  • Review Manager. (2014). Review Manager Version 5.3. Copenhagen: The Cochrane Collaboration. Retrieved from
  • Ross, S. M., Morrison, G. R., & Lowther, D. L. (2010). Educational technology research past and present. Contemporary Educational Technology, 1(1), 17–35.
  • Sembill, D. (1992). Problemlösefähigkeit, Handlungskompetenz und emotionale Befindlichkeit: Zielgrößen forschenden Lernens. Göttingingen: Hogrefe.
  • Suchmacher, M., & Geller, M. (2012). Practical Biostatistics. London: Academic Print.


This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.