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This study investigates sixth-grade Turkish students’ pattern-generalization approaches among 
arithmetical generalization, algebraic generalization, and naïve induction. A qualitative case study design 
was employed. The data was collected from four sixth-grade students through the Pattern Questionnaire 
(PQ) and individual interviews based on the questionnaire. The findings revealed that all students 
generalized near terms using arithmetical generalization as the first step and then they mostly looked for a 
general rule through memorized procedures by skipping far term generalization. When they found the 
general rule, far terms were calculated by rote. In other words, students did not generalize the pattern to 
far terms using an algebraic generalization. The current study's findings would give valuable information 
to the mathematics educators regarding the necessity of avoiding creating a procedural instructional 
environment by focusing on the rote procedure of finding the general rule of a pattern. These findings 
would also expand the horizons of curriculum developers regarding the importance of objectives about 
both near terms and far term generalization by progressing from arithmetical generalization to algebraic 
generalization.  

Keywords: Algebra; Pattern; Generalization; Arithmetic; Algebraic; Symbolic 

Article History: Submitted 27 May 2022; Revised 27 September 2023; Published online 12 October 2023 

1. Introduction

Algebra learning is considered the key to the development of some basic mathematical skills such 
as understanding equality, understanding patterns, relational thinking, and problem solving.  It is 
strongly recommended to involve algebra instruction as a part of the middle school mathematics 
curriculum (Carraher et al., 2006; National Council Teachers of Mathematics [NCTM], 2010). 
Elementary mathematics curricula of most countries, including Türkiye, acquaint students with 
algebra in the middle grades (6th-8th-grade level) after five years of arithmetic-based instruction at 
the primary grades. Nevertheless, literature shows a serious obstacle for young students to 
develop algebraic reasoning skills because of the dominance of arithmetic in primary grades 
(Kamol & Har, 2010; Warren, 2003). State differently, beginning algebra students experience severe 
difficulty during the transition from arithmetic to algebra (Knuth et al., 2005; Sfard, 1995). 

To ensure the transition from arithmetic to algebra, the literature recommends pattern-
generalizing tasks (Dörfler, 2008). Pattern generalization tasks enable great opportunities for 
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students to gain experience in both arithmetic and algebra fields. It is because a pattern can be 
generalized both arithmetically and algebraically. To conduct the generalization arithmetically, an 
arithmetic/additive relationship between terms is explored; on the other hand, to conduct the 
generalization algebraically, it is necessary to explore the algebraic relationship between terms and 
term numbers. The transition from former to latter could get easier as students deal with pattern 
generalization activities. Yet, it is extremely important to make sure that the transition process is 
smooth and natural (Carpenter et al., 2003). Students will likely not build a bridge between two 
fields when there is a sharp jump from arithmetic generalization to algebraic generalization. 

To provide a smooth transition from arithmetic to algebraic generalization, literature 
recommended focusing on the generalization of near and far terms of the pattern before any/nth 
term (NCTM, 1997; Radford, 2008). In an ordered pattern, it is natural and easy to use 
arithmetic/additive relationships when it is asked to generalize the pattern to near terms such as 
the fifth or sixth term. Yet, generalizing the pattern to far terms such as 20th, 50th, or 100th terms 
would not be as practical as near terms. It is necessary to move from the additive structure of 
consecutive terms to the algebraic structure of each term based on term number. Thus, the 
transition from near term generalization to far term generalization would naturally lead students 
from arithmetic thinking to algebraic thinking (Ontario Ministry of Education, 2013). In this way, 
pattern generalization tasks enable researchers to observe students' arithmetic and algebraic 
generalization processes.  

To be able to focus on students’ transition from arithmetic to algebraic generalization process, it 
is important to observe and report the whole generalization process of students. When the 
literature is reviewed, it is seen that while some studies (Akkan & Çakıroğlu, 2012; Firdaus et al., 
2019; Lin & Yang, 2004) resulted in one generalization method while describing students’ pattern 
generalization, some of the studies (Amit & Neria, 2008; Barbosa, 2011; Orton & Orton, 1999; 
Stacey, 1989) reported that students are more likely to use more than one generalization method 
since near and far generalizations might necessitate different processes. The latter aspect provides 
evidence that pattern generalization cannot be restricted to one method since it represents a 
developmental process (Radford, 1996). While students change the generalization method as they 
develop from near term generalization to far term generalization and to find the general term, it 
becomes possible to observe developmental generalization processes and also detect the possible 
gaps during the transition from arithmetic generalization to algebraic generalization.  

Algebraic generalization is a process as well as pattern generalization (Radford, 2010a). Yet, 
some studies do not represent algebraic generalization developmentally. For example, the method 
with algebraic nature was called linear strategy (Stacey, 1989), functional/conceptual/global strategy 
(Amit & Neria, 2008), explicit/linear strategy (Orton & Orton, 1999), and correspondence relationship 
(Somasundram, 2019).  These methods often carry similar meanings despite being called 
differently by researchers. These researchers represent algebraic generalization as a one-step 
method, yet this view might represent a restricted approach. On the other hand, in parallel with 
the process approach, some recent studies began to view algebraic generalization as a process (Aké 
et al., 2013; Godino et al., 2015; Maudy et al., 2018; Radford, 2010a), so they defined algebraic 
generalization methods not as limited with one method but as a combination of developmental 
layers. For example, Aké et al. (2013) defined four levels of algebraic generalization, and Radford 
(2010a) divided algebraic generalization into three progressive steps. This developmental 
approach enables especially beginning algebra students to develop algebraic thinking skills step by 
step. Therefore, avoiding a sharp transition from arithmetic generalization to algebraic 
generalization would become more possible.  

All in all, it can be said that pattern generalizing tasks have great importance for beginning 
algebra students during the transition from arithmetic to algebra since they enable them to 
experience and relate both arithmetic and algebraic generalization processes. Still, it is necessary to 
avoid a sharp transition from arithmetic to algebraic generalization. To provide this transition as 
smoothly as possible, the literature recommends seeing algebraic generalization as a process and 
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moving from the generalization of given terms to the generalization of not given near and then far 
terms. In this study, students’ generalization process was investigated in a sequence of near term 
generalization, far term generalization, and reaching the general term through a developmental 
approach as recommended by the literature. In this way, it would be possible to explore students’ 
own generalization paths regarding near term generalization, far term generalization, and 
reaching the general term. Thus, it would be possible to detect students’ gaps between arithmetic 
generalization and algebraic generalization. Based on the literature review, we focused on the 
sixth-grade Turkish students’ generalization of patterns in algebra.  

1.1. Theoretical Framework 

As explained above, pattern generalization tasks carry a progressive nature from arithmetic 
generalization to algebraic generalization. Thus, while selecting the theoretical perspective of the 
present study, this progressive nature was considered as the main concern. In the present study, 
the pattern generalization approach by Radford was adopted as the theoretical perspective. 
Radford (2006, 2008, 2010a) has studied the field of algebraic generalization. After long years of 
study, he observed a gap between students’ starting algebraic thinking and their capability of 
using symbolic algebra (Radford, 2010b). Through his theory, he called this gap a “zone of the 
emergence of algebraic thinking” (Radford, 2010b, p.36). According to Radford, algebraic 
generalization has progressive layers (Radford et al., 2006). Students should pass from each layer 
to ensure the full transition from arithmetical generalization to algebraic generalization (Radford, 
2003). These layers are factual generalization, contextual generalization, and symbolic 
generalization.  

Arithmetical generalization refers to the generalization based on the recursive relationship 
between consecutive terms of the pattern. For example, if a student notices that 2 more circles are 
added in each step of the pattern in Figure 1, this is an example of arithmetical generalization.  

Figure 1 
The pattern example from Radford et al. (2006, p. 395) 

 

 

After arithmetical generalization, the first layer of algebraic generalization, i.e., factual 
generalization, progresses. Through factual generalization, students realize a “factual” generality, 
which allows for building the algebraic relationship between term numbers and terms (Radford, 
2003, p.46). This factual generality enables students to find the numerical value of near and far 
terms. When a student explored that the top row of the first step has 2 circles, which is 1 more than 
step number 1, and the bottom row has 3 circles, which is 2 more than step number 1, it could be a 
starting point for factual generalization for the pattern in Figure 1. Then, s/he might search it in 
the second or third steps and notice that the second and third steps also have the same structure: 
the top row of the second step has 3 circles, which is 1 more than step number 2, and the bottom 
row has 4 circles, which is 2 more than the step number 2. This exploration of the student is a 
factual generalization. For example, it enables us to find the number of circles in the 25th step as 26 
circles in the top row and 27 circles in the bottom row. 

After factual generalization, students tend to find unspecific terms. They move to express the 
general rule to find any term of the pattern. If they use natural language, it is called contextual 
generalization (Radford, 2003). For instance, the expression of the general rule of the pattern in 
Figure 1 as ‘The top row always has 1 more circle than the step number and the bottom row has 2 
more circles than the step number’ is an example of contextual generalization. On the other hand, 
if they use formal symbolic language, it is called symbolic generalization (Maudy et al., 2018; 
Radford, 2010a). Traditionally, the formal symbolic language of algebra includes alphanumeric 
letters such as x, y, z, n, etc. These letters are used in replacement of unspecified term numbers.  
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For example, the general rule of the pattern in Figure 1 can be expressed as ‘(n+1)+(n+2)’ through 
symbolic generalization. 

Apart from arithmetical and algebraic generalization, Radford also defined naïve induction. 
Naïve induction does not carry the nature of generalization (Radford, 2010a). It includes trial and 
error without understanding the mathematical structure of terms. Through naïve induction, 
students just try some calculations to find a rule that fits the pattern. For example, a student might 
try to multiply step number 2 with 3 and add 1 in the pattern of Figure 1. Yet, it does not work for 
the first and third steps. Then, s/he might try to multiply it by 2 and add 3. Luckily, this trial 
works for other steps. Then, students might write this trial rule as a general rule. Still, this process 
does not represent the nature of generalization. 

In sum, Radford’s pattern generalization approach carries a progressive nature and enables 
distinguishing trial and error from the arithmetic and algebraic generalization processes. In the 
present research, students’ generalization approaches were analyzed within the scope of Radford’s 
generalization layers. 

1.2. The Rationale for the Study 

Despite the considerable gains of pattern generalization, some problematic areas come into 
existence, which prevent the conceptual understanding of pattern generalization in educational 
environments. The first problematic area identified in the literature is the procedure-focused 
instruction of pattern generalization in mathematics lessons. Literature showed that the instruction 
of pattern generalization is conducted in a procedural way more than in a conceptual way in 
traditional mathematics lessons (Lannin et al., 2006). This procedure generally consists of finding 
the common difference and multiplying the common difference with the nth term, where n is the 
term number, and replacing n with any specific term number in order to decide which number to 
add or subtract (Spangenberg & Pithmajor, 2020). As an example, Girit and Akyüz (2016) reported 
that students “get used to multiply something and add something for getting a rule” (p. 261). By 
memorizing the procedure, students could apply this technique, generate the rule of the pattern, 
and answer the questions, yet they cannot develop a conceptual understanding of pattern 
generalization in this way. To understand pattern generalization conceptually, literature 
recommended progressing from exploring arithmetic relationships to algebraic relationships. First, 
due to the easiness of noticing arithmetic differences, it would be normal for beginning algebra 
students to see the pattern as an increasing/decreasing number sequence with a fixed difference. 
Then, asking some leading questions could transform their understanding from the arithmetic 
stage to the more algebraic stage. For example, asking to reach some near terms such as 5th, 6th, 10th 
and then some further terms such as 20th, 30th, and eventually far terms such as 100th, 1000th could 
make students feel the impracticality of arithmetic increase/decrease and lead them to explore 
algebraic relations within each term and term number. In this way, students explore patterns in a 
progressive conceptual way instead of memorizing the procedures. 

The other problematic area of pattern generalization is the obsession with identifying students’ 
algebraic generalization capabilities only with symbol use (Radford, 2010b). As literature showed, 
in order to reach algebraic generalization, students should naturally go through a progressive 
process (Aké et al., 2013; Garcia-Cruz & Martinón, 1998; Godino et al., 2015; Maudy et al., 2018; 
Radford, 2010a). This progressive process should include the development from pre-symbolic 
generalizations to symbolic generalizations (Rivera, 2013). Yet, lately, most of mathematics 
curricula, including Turkish mathematics curricula (Ministry of National Education [MoNE], 
2018), expect beginning algebra students to manage symbolic generalization as a first step. 
Nonetheless, this approach prevents students from comprehending the progressive nature of 
pattern generalization (Lannin et al., 2006). According to Radford’s theory of algebraic 
generalization, the absence of algebraic symbols does not show the absence of algebraic thinking. 
In addition, it restricts mathematics educators from viewing the generalization of students as tied 
up with the correct usage of symbolic generalization rather than as a developmental process.  
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As the literature showed, rote procedures of finding the general rule and persistence of 
symbolic generalization have become the center of mathematics instruction (Girit & Akyüz, 2016; 
Lannin et al., 2006; Maudy et al., 2018). Due to these problematic areas, students have difficulties in 
understanding algebraic generalization conceptually. According to Lee and Wheeler (1987), the 
difficulty for students is not “seeing the pattern” but “seeing an algebraically useful pattern” 
(p.95). Many studies reported students experiencing difficulty in understanding the pattern 
algebraically during pattern generalization (Becker & Rivera, 2005, 2006; Lee & Wheeler, 1987; Lin 
& Yang, 2004). For example, Becker and Rivera (2005) reported only five students out of 22 ninth-
grade students generalized a pattern algebraically. Similarly, Maudy et al.’s (2018) study showed 
that students were not able to build a conceptual understanding of the algebraic nature of 
generalization. Thus, it is of great importance to analyze students’ pattern generalization as a 
whole process from two aspects. First, it could enable researchers to follow the flow of each 
student’s changing methods during generalization based on the near term, far term, and general 
term. Then, it could clarify the point of a sharp jump from arithmetical generalization to the rote 
procedures of symbolic generalization. Second, it could detect students’ general tendency during 
passing from arithmetical generalization to the developmental layers of algebraic generalization. 

All in all, as indicated in the literature, the problem statement is students’ tendency to apply 
arithmetic generalization at the beginning and then jump either to rote-memorized procedures of 
finding the general rule or to meaningless trial and error by skipping progressive algebraic 
generalization layers. Yet, it is not clear at what stage students skip algebraic generalization layers 
and prefer rote memorized procedures. Also, there are not enough studies conducted with 
students in Türkiye in this sense. Therefore, this study aims to enlighten beginning algebra 
students’ generalization processes in their entirety to determine their generalization approaches 
while generalizing a pattern to near terms, far terms, and any term. Based on these concerns, the 
research question of the current study is as follows: 
● What is the nature of sixth grade students’ generalization approaches in terms of arithmetical 

generalization, layers of algebraic generalization, and naïve induction? 

2. Method 

In the current study, a qualitative case study design was employed. The reason for selecting a case 
study design is that it enables the researcher to explore an issue deeply through cases, and it could 
involve data from multiple sources (Creswell, 2013). In this study, researchers aimed to explore 
students’ pattern generalization approaches through cases by using written work and interviews. 
The data was collected from four sixth-grade public school students in Türkiye. 

2.1. Pattern-generalization in Turkish Middle School Mathematics Curriculum 

In the Turkish middle school mathematics curriculum, fifth-grade students are expected to expand 
an arithmetic pattern to some near terms, such as the fifth or sixth term, by adding the fixed 
difference onto the previous term (MoNE, 2018). Students are expected to express the rule of 
arithmetic patterns with the letter and to calculate the asked steps of the patterns whose rule is 
expressed with a letter in sixth-grade curriculum materials (MoNE, 2018). 

Therefore, we focus on the sixth-grade students’ mathematical activities when algebraic 
symbols were first introduced in the official curriculum materials. 

2.2. Participants 

The participants of the study were selected from a public middle school purposefully. There were 
two selection criteria used, the first of which is students’ enthusiasm for mathematics lessons. The 
reason behind this criterion is the researchers’ common opinion that mathematically enthusiastic 
students would be more interested in answering the questions in the Pattern Questionnaire and 
more likely to provide rich information. The second criterion was their willingness to talk about 
their thinking. In this study, data were gathered through individual interviews conducted one 
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participant at a time, so the participants’ willingness to talk was essential. All the students 
participated voluntarily in the current study. The participants of the study were selected from a 
public middle school. There were some commonalities among these four students. Firstly, all four 
students’ age ranged from 11 to 12. Their socioeconomic statuses were medium, where monthly 
income was a bit more than the established subsistence level. P1, P2, P3, and P4 were defined with 
moderate academic performance by their mathematics teacher. They all were in the same class. All 
four students were talkative and enthusiastic about the mathematics lesson. They were given 
pseudonyms and labeled as P1, P2, P3, and P4. 

To ensure ethical issues, official permissions were taken from the University Ethics Committee 
and Ministry of Education as the first step. Then, the school administration was informed about 
the study and the participants of the study were selected among voluntary students. Each 
participant was asked to sign the Informed Consent Form and Parental Approval Form. The 
confidentiality of identities was ensured during the study.  

2.3. Data Collection 

There were two sources of data: participants’ written work on the Pattern Questionnaire and task-
based interviews conducted during the Pattern Questionnaire. The Pattern Questionnaire included 
three open-ended pattern generalization tasks, all of which were adapted from the literature. Due 
to the adaptation of each task from the literature, the validity and reliability of the tasks were 
ensured in the past related studies. The purpose of the Pattern Questionnaire was to gather 
information about the pattern generalization process of participants. As recommended in the 
literature, pattern generalization objectives specifically included generalizing the pattern to the 
next, near, and far terms in order and expressing a general rule (Moss et al., 2006; Radford, 2000). 
Therefore, each question included four sub-questions related to generalizing the pattern to the (i) 
next, (ii) near, (iii) far terms, and (iv) expressing the general rule.  

The other data source was task-based interviews (Goldin, 2000). The first author interviewed 
one participant at a time while the participant was answering the questions in the Pattern 
Questionnaire. For instance, as a student was generalizing the pattern and answering the sub-
questions in the Pattern Questionnaire, the first author asked about how s/he generalized the 
pattern to near or far terms or asked about more detail of the solution. For example, while a 
student was generalizing a pattern in a question, the first author asked questions such as ‘Could 
you explain your work here?’, ‘Could you explain what you meant in detail?’ or ‘How did you 
find the number of circles in the twentieth step?’ The duration of the interview was almost one 
hour. The confidentiality of the identities and voluntary participation were reminded before 
starting each interview session. The sessions were audio recorded. 

2.4. The Tasks in the Pattern Questionnaire 

The first task was adapted from the study of Van de Walle et al. (2007). Originally (see Figure 2), it 
was asked to fill in the blanks in the given table for the first, second, third, fourth, fifth, tenth, and 
twentieth steps. In addition, it was asked to write a general rule with words and/or symbols. To 
not limit students in a specific direction, the table part of the question was removed, and the 
general rule was asked without directing students to use words or symbols. Lastly, triangles were 
replaced with circles since it is easy to draw circles.  

The second task was adapted from the study of Mason et al. (2005). In the original version (see 
Figure 3), it was asked only to find a rule for the nth picture. Near or far terms were not requested. 
In the adapted version, new items, which ask for near and far steps, such as the fourth, fifth, tenth, 
and fiftieth steps, were added to see students’ generalization processes of near and far terms by 
Radford’s generalization approach. Additionally, instead of ‘nth picture,’ ‘the general rule’ 
expression was used not to lead students to use ‘n.’  
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Figure 2 
(Upper) The original version of question 1 (Van de Walle et al., 2007, p. 269); (Lower) the adapted version of 
question 1 

 

Figure 3 
(Upper) The original version of question 2 (Mason et al., 2005, p. 117); (Lower) the adapted version of 
question 2 

 

The third task was adapted from the study of Stacey (1989). In Stacey’s study (1989), the pattern 
has presented the pattern with two visuals rather than a sequence of visuals. In addition, she used 
the expression ‘the number of rungs’ instead of ‘step number’. Lastly, no question was asked about 
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the general rule of the pattern, as seen in Figure 4. To use the question in the current study, the 
pattern was represented as growing steps. In addition, the phrase ‘step number’ was preferred 
instead of the phrase ‘the number of rungs’. Lastly, an item that asks for a general rule of the 
pattern was added to see how students generalize a pattern to any term according to the purpose 
of the study. 

Figure 4 
(Upper) The original version of question 3 (Stacey, 1989, p. 148); (Lower) the adapted version of question 3 

 

2.5. Data Analysis 

During data analysis, all the audiotaped interviews were transcribed to prepare for descriptive 
analysis. Researchers read all the transcripts repeatedly and the first coding was managed based 
on predetermined codes (arithmetical generalization, algebraic generalization [with layers of 
factual generalization, contextual generalization, and symbolic generalization], and naïve 
induction, as obtained from Radford, 2000). In addition to these predetermined codes, it was also 
observed that at the end of the generalization processes, some students verified their rules by 
replacing the unknown quantity with some known numbers. This part of students’ answers was 
coded as verification. Lastly, as expressed in detail above, sub-questions of each question asked for 
the generalization of some near and far steps of the pattern such as fourth, fifth, tenth, hundredth, 
etc. If students skipped these generalization steps and calculated them by applying the general 
rule after finding a general rule, this part of their answers was coded as rote calculation. Secondly, 
the transcribed data were coded by another coder, who is also a mathematics teacher, based on a 
given coding schema. After coding the transcript by the first researcher and an independent coder, 
the results were compared. Lastly, the establishment of the last version of coded transcripts on 
codes and categories were provided.  

As a result of data analysis, three categories emerged. The first category included (i) generalizing 
near terms with Arithmetic Generalization, (ii) expressing the general rule with Contextual Generalization 
or Symbolic Generalization, (iii) Verification of the general rule, and (iv) Rote Calculation. The second 
category included (i) generalizing near terms with Arithmetic Generalization, (ii) finding a general rule 
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with Naïve Induction, and (iii) rote calculation. The third category included (i) generalizing near terms 
with both Arithmetic Generalization and Factual Generalization, (ii) expressing the general rule with 
Contextual Generalization and/or Symbolic Generalization, and (iii) Rote Calculation (if needed). These 
categories were called Generalization Approaches in the rest of the study. Below are some 
examples of the codings based on the given pattern in Figure 5.  

Figure 5 
A pattern example from Mason et al. (2005, p.137) 

 

If students start the generalizing process by adding the constant difference between consecutive 
terms to the previous term in order to find the near terms, it was coded as ‘generalizing near terms 
with Arithmetical Generalization’. For instance, ‘This pattern increases by 2 at each step. So, I should 
add 2 to the fourth term in order to find the fifth term’ that can be categorized under this code. 

If students generalize the pattern to near terms both with Arithmetical Generalization and 
Factual Generalization, it was called ‘generalizing near terms with both Arithmetic Generalization and 
Factual Generalization’. An example for this category is as follows: ‘This pattern increases by 2 at 
each step. So, I should add 2 to the fourth term in order to find the fifth term. The fourth term is 7. 
Then, the fifth term is 9. In the fourth term, the bottom line has 4 circles. It is the same with step 
number 4. The upper line has 3 circles. It is 1 less than step number 4. Then, in the fifth term, the 
bottom line will have 5 circles, and the upper line will have 4 circles. 4 plus 5 is 9. I had already 
found 9 for the fifth step.’  

If students reach the general term with Contextual Generalization or Symbolic Generalization, it 
was coded as ‘expressing the general rule with Contextual Generalization and/or Symbolic Generalization’. 
Some examples for this category could be as follows: ‘I should multiply the step number with 2, 
because the common difference is 2. Then, I should subtract 1. This is the rule. Then, it is 2n-1.’ or 
‘The number of circles in the bottom line is the same as the step number. The number of circles in 
the upper line is one less than the step number. Then, the general rule is step number plus step 
number minus one. In other words, n+n-1.’ 

If students reach the general term with meaningless trial and error, it was coded as ‘finding a 
general rule with Naïve Induction’ such as this answer ‘Multiplying step number with 4 does not 
work. Multiplying it with 3 does not work, either. Yes, I can find the terms by multiplying the step 
number with 2 and subtracting 1. Then, this is the rule.’ 

If students verify their general rule on given terms, it was coded as ‘Verification of the general 
rule’ such as this answer: ‘Multiplying the step number with 2 and subtracting 1 gives the right 
answer at the first step. Multiplying the step number with 2 and subtracting 1 also gives the correct 
answer at the second step.’ 

If students calculate the terms of the pattern by applying the general rule, it was coded as ‘Rote-
calculation’ such as this answer: ‘The general rule is 2n-1. To find the 50th term, I will replace n with 
50 and add 1. It is 99.’ 

3. Findings 

The research question of the current study is about sixth-grade students’ generalization process of 
patterns. The analysis of students’ answers revealed three generalization approaches, as seen 
below. 
• Approach 1 included (i) generalizing near terms with AG, (ii) expressing the general rule with CG or 

SG, (iii) verification of the general rule, and (iv) rote calculation; 
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•  Approach 2 included (i) generalizing near terms with AG, (ii) finding a general rule with naïve 
induction, and (iii) rote calculation; 

•  Approach 3 included (i) generalizing near terms with both AG and FG, (ii) expressing the general 
rule with CG and/or SG, and (iii) rote calculation (if needed). 

Table 1 
The frequencies of each approach 
 Question 1 Question 2 Question 3 Frequency 

Approach 1 P1, P4 P3, P4 P1, P3, P4 7 times 
Approach 2 - P1 P2 2 times 
Approach 3 P2, P3 P2 - 3 times 

 
 Among three of them, Approach 1 was the most observed model. It was seen seven times by 

one student (P1) in the first and third questions, by another student (P3) in the second and third 
questions, and by one student (P4) in all three questions. Approach 2 and Approach 3 were seen as 
much fewer than Approach 1. While Approach 2 was seen two times by one student (P1) in the 
second question and by another student (P2) in the third question, Approach 3 was seen three 
times by one student (P2) in the first and second questions and by another student (P3) in the first 
question (see Table 1).  

3.1. Approach 1 

The first approach, which was revealed as a result of the data analysis, included generalizing near 
terms with AG, expression of a general rule with CG or SG, verification of the general rule, and 
rote calculation. P1 and P4 in the first question, P3 and P4 in the second question, and P1, P3, and 
P4 in the third question followed this path. In this model, all students in all questions first 
translated figural patterns into numeric patterns. Then, they started generalizing the pattern to the 
near terms with arithmetical generalization. After the arithmetical generalization of near terms, 
they did not move to the factual generalization of near or far terms. Instead, they jumped to the 
‘find a general rule’ part by skipping to generalize the pattern to far terms. With this intention, 
each student aimed to express a general rule in the form of d.n+b, where d represents the constant 
difference, n represents the step number, and a represents the constant.  

When students’ answers were analyzed, it was seen that these students were aware of the form 
of the general rule as ‘the step number (n) times constant difference (d) plus/minus something (a)’. 
In other words, they firstly expressed the variable part by multiplying the step number with the 
constant difference. Then, they calculated the constant part by verifying their rule on the given 
steps. After completing this process, they continued to verify their general rule on the first few 
terms. When the verification is done, they rote-calculated the near and far terms, such as the 10th, 
50th, and 100th terms, by applying the general rule they formed, as exemplified below in Table 2.  

As seen in Table 2, P3 noticed the constant difference between the terms of the pattern as 2 and 
used arithmetical generalization to reach the fourth and fifth terms. When asked about the tenth 
term, he needed a general rule and expressed the general rule as 2N+1. Then, he verified his rule 
on the first, second, and third terms. After verification, he rote-calculated the tenth and fiftieth 
steps. There is another example from the third question in Table 3. 

In the example summarized in Table 3, P1 firstly noticed the constant difference as 3, then s/he 
expressed the general rule as “step number times 3 plus 2” and “n3+2”. Then, s/he verified the 
rule on the first, second, third, fourth, and fifth steps. As the last step, s/he rote-calculated the 
number of circles in the tenth and fiftieth steps. There is another example from the first question 
presented in Table 4. 
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Table 2 
An example from the second question (see Figure 3 for the original question) 
Q2 

Arithmetical generalization P3: (Student counts the number of circles in the first three steps and writes 
them upon the figures.) Here, the amounts [of circles] are increasing 2 by 
2. In the fourth step, I should add 7 to 2; it is 9. To form the fifth step, I 
should add 2 again. 9 plus 2 equals 11. There are 11 circles in the fifth step. 

Naïve Induction - 
Algebraic generalization  

Factual generalization - 
Contextual generalization - 
Symbolic generalization P3: To form the tenth step, I should find the general rule. The general rule 

is increasing as 2N. But, it is becoming 2N+1. 
Verification P3: To find the first step, 2 times 1 is 2; 2 plus 1 is 3. 2 times 2 is 4; 4 plus 1 

is 5. To find the third step, 2 times 3 is 6; 6 plus 1 is 7. They are all true. 
Rote calculation P3: 2 times 10 is 20; 20 plus 1 is 21. To find the fiftieth step, 50 times 2 is 

100; 100 plus 1 is 101. 

 

Table 3 
An example from the third question (see Figure 4 for the original question) 
Q3 

Arithmetical generalization P1: There are 5 [matches] in the first step. There are 8 [matches in the 
second step] and 11 [matches in the third step]. Since it is increased by 3... 

Naïve Induction - 
Algebraic generalization  

Factual generalization - 
Contextual generalization P1: ...since it is increased by 3, it [the general rule] is the step number times 

3 and plus 2. 
Symbolic generalization (P1 writes n3+2). 

Verification P1: When I multiplied 1 by 3 and added 2, it is 5 here [in the first step]. 
When I multiplied 2 by 3 and added 2, it is 8 [in the second step]. When I 
multiplied 3 by 3 and added 2, it is 11 [in the third step]. In the fourth step, 
4 times 3 is 12 and 12 plus 2 is 14. In the fifth step, 5 times 3 is 15 and 15 
plus 2 is 17… 

Rote calculation P1: So, [in order to calculate the tenth step] 10 times 3 is 30. 30 plus 2 is 32. 
In the 100th step, 100 times 3 is 300, and 300 plus 2 is 302. 

 
Table 4 
An example from the first question (see Figure 2 for the original question) 
Q1 

Arithmetical generalization P4: This pattern increases by 3 here [points from the first term to the 
second term] and here [points from the second term to the third term]. 
Therefore, it should increase by 3 here [points to the fourth term]. So, this 
[the fourth term] is 9 plus 3. 

Naïve Induction - 
Algebraic generalization  

Factual generalization - 
Contextual generalization - 
Symbolic generalization P4: It is 3N…Yes, the pattern increases as 3N since they [terms] are 

increased by 3. 
Verification P4: For example, in the fourth step, when I replaced N with 4, it is 12. I had 

already found the 12. 
Rote calculation P4: [To find the tenth term] 3 times 10 is 30. [To find the fiftieth term] 3 

times 50 is 150. 
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In this example (see Table 4), P4 firstly indicated the constant difference between the first three 
consecutive terms as 3, then s/he found the fourth term by adding the constant difference onto the 
third term. As the second step, s/he expressed the general rule as “3N” and verified the rule on the 
fourth term. After verification, s/he calculated the tenth and fiftieth terms.  

3.2. Approach 2 

The second approach, which was revealed as a result of data analysis, included generalizing near 
terms with AG, finding a general rule with NI, and rote calculation. P1 in the second question and 
P2 in the third question followed this path. In this model, all students first counted the figures and 
transformed them into numeric patterns. Then, they started generalizing the pattern to the near 
terms with arithmetical generalization. Similar to Approach 1, they directly intended to find a 
general rule as the second step. But, different from Approach 1, they used trial and error. When 
students’ answers were analyzed, it was seen that these students were aware of the form of the 
general rule as ‘the step number (n) times something plus/minus something’. Yet, as different 
from the students in the first model, these students were not aware of the necessity of multiplying 
the step number with the constant difference between consecutive terms. Therefore, they just made 
random guesses with the trial and error method, as seen in the answer of Participant 2 to the third 
question below in Table 5. 

Table 5 
An example from the third question (see Figure 4 for the original question) 
Q3 

Arithmetical generalization P2: There are 5 in the first step, 8 in the second step, and 11 in the third 
step. So, it increases by 3. 11 plus 3 is 14. 14 toothpicks are necessary for 
the fourth step. 14 plus 3 is 17. 17 toothpicks are required in the fifth step. 

Naïve Induction P2: It asks for the tenth step. Therefore, I need a rule. Let me try to 
multiply the step number by 2. [For the first step], 1 times 2 is 2; 2 plus 3 is 
5. That is right for the first step. [For the second step], 2 times 2 is 4; 4 plus 
3 is 7. That is not right for the second step. Let me try to multiply the step 
number with 3 and add 2. [For the first step], 1 times 3 is 3; 3 plus 2 is 5. It 
is right. [For the second step], 2 times 3 is 6; 6 plus 2 is 8. Yes, [the rule is] 
the step number times 3 plus 2. 
R: In the previous two questions, you said that you were multiplying the 
step number with the increase between the consecutive steps. Now, you 
first tried to multiply with 2. When it did not work, you tried to multiply 
with 3. Could you explain the reason? 
P2: It may not always be multiplied with the increment. I usually think of 
the trial and error method. Therefore, I firstly tried ‘2’. Since it did not 
work, I tried ‘3’. When I multiplied the fourth step by 3, it is 12; 12 plus 2 is 
14. It still works. 

Algebraic generalization  
Factual generalization - 
Contextual generalization - 
Symbolic generalization - 

Verification - 
Rote calculation Now, it asks for the tenth step. 3 times 10 is 30; 30 plus 2 is 32. There are 32 

toothpicks in the tenth step. [In the next item], it asks for the 100th step. 100 
times 3 is 300; 300 plus 2 is 302.  There are 302 toothpicks in the 100th step. 

 
As seen in the example, P2 conducted near generalization with arithmetical generalization by 

generalizing the pattern to the fourth and fifth terms by adding the constant difference to the 
previous terms. After arithmetical generalization, P2 directly moved to the trial and error method 
and tried to multiply the step number with 2. When it did not work, P2 tried multiplying the step 
number with 3 and adding 2. When she tried the rule for the first and second terms, it was 
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working. Then, she also tried the working rule on the fourth term and decided on it. As a last step, 
she rote-calculated the tenth and hundredth terms by applying the general rule. Below is another 
example from the second question in Table 6. 

Table 6 
An example from the second question (see Figure 3 for the original question) 
Q2 

Arithmetical generalization P1: In this question, it is increased by 2 in the second step and by 4 in the 
third step.  
R: Could you explain more? 
P1: I considered the first step at both (the second and third steps). I 
marked the first circle at both (steps). Here (in the first step), it is increased 
by 2. Here (in the second step), it is increased by 4. Here (in the third step), 
it is increased by 6. So, the fourth step will be 9. I mean, it will be increased 
by 8. There was 1 (showing the first circle); therefore, it will be 9. In the 
fifth step, I will add 10 to 1. It will be 11.   

Naïve Induction R: What about the tenth step? 
P1: With what should I multiply the step number? For example, step 
number times 3? No, it does not work here (the student shows the second 
step). Hmm… I guess I found it. Step number times 2 plus 1 works! For 
example, if I multiply 2 with 1 (student shows the first step) and add 1, I 
can find 3. If I multiply 2 with 2 (student shows the second step) and add 
1, I can find 5. Here (student shows the third step), I can find 6 and add 1. 
It will be 7…. So, I multiplied by 2 and added 1. It worked at every step. 
Then, the tenth step will be 21, and the fiftieth step will be 101. The rule is 
the step number times 2 plus 1 (student writes n2+1). 

Algebraic generalization  
Factual generalization - 
Contextual generalization - 
Symbolic generalization - 

Verification - 
Rote calculation - 

 

As understood from the example, P1 first reached arithmetical generalization and calculated the 
fifth step as 11. When s/he was asked about the tenth step, s/he looked for a general rule with 
naïve induction. First, s/he tried multiplying the step number with 3, but it was not a working 
rule. Then, s/he tried to multiply the step number with 2 and added 1. She tried the rule on the 
first few terms and became sure that it gave the right answers. Lastly, she calculated the tenth and 
fiftieth steps and expressed the general rule as “step number times 2 plus 1” and “n2+1”. 

3.3. Approach 3 

The third approach, which was revealed as a result of the data analysis, included generalizing near 
terms with both AG and FG, expression of the general rule with CG and/or SG, and rote 
calculation (if needed). P2 and P3 in the first question and P2 in the second question followed this 
path. In this model, all three students first transformed figures into numbers and started 
generalizing the pattern to the near terms with arithmetical generalization. Then, they formed a 
factual generalization and reached some near terms with factual generalization. But, they also 
skipped the far term generalization. As a last step, they expressed the general rule, which they 
reached using factual generalization, with contextual or symbolic generalization. They did not 
need a verification step since they reached the general rule based on a factual generalization. Some 
of the students in Approach 3 used rote calculation.  
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Table 7 
An example from the first question (see Figure 2 for the original question) 
Q1 

Arithmetical generalization P2: There are 3 circles in the first step, 6 in the second step, and 9 in the 
third step. The pattern increases by three [circles].   

Naïve Induction - 
Algebraic generalization  

Factual generalization P2: The first step equals 1 times 3. The second step times 3 equals 6. The 
third step times 3 equals 9. So, this is true. 

Contextual generalization P2: I can say that the general rule is the step number times 3. 
Symbolic generalization - 

Verification - 
Rote calculation P2: The first question asks the number of circles in the fourth step. I will 

multiply the fourth step with 4, it is 12. The second question asks the 
number of circles in the tenth step. I will multiply the tenth step with 3, it 
is 30. To calculate the number of circles in the fiftieth step, I will multiply 
the fiftieth step with 50, it is 150. 

 
As exemplified above in Table 7 from the first question, P2 noticed the constant increase in the 

pattern with arithmetical generalization. Then, he noticed a different relationship in the first three 
terms and expressed the first term as 1 times 3 instead of just 3, the second term as 2 times 3 
instead of just 6, and the third term as 3 times 3 instead of just 9. At this point, he reached a factual 
generality since he explored the mathematical structure of the first three terms. After factual 
generalization, he expressed the general rule with contextual generalization and rote-calculated 
the number of circles in the fourth, tenth, and fiftieth terms. In Table 8, another example is given 
from the second question. 

Table 8 
An example from the second question (see Figure 3 for the original question) 
Q2 

Arithmetical generalization P2: 3 circles in the first step and 5 in the second step. I expect 7 circles in 
the third step. Yes, right. Then, the fourth step becomes 9, and the fifth 
step becomes 11 since it increases by 2. It asks the number of circles in the 
tenth step. I can continue in the same way. 11 for the fifth step, 13 for the 
sixth step, 15 for the seventh step, 17 for the eighth step, 19 for the ninth 
step, and 21 for the tenth step… 

Naïve Induction - 
Algebraic generalization  

Factual generalization P2: Now, it asks for the number of circles in the fiftieth step. I need a rule. 
In the first step, 1 times 2 is 2, plus 1 equals 3. That is right. In the second 
step, 2 times 2 is 4, plus 1 equals 5. 

Contextual generalization P2: The rule is step number times 2 plus 1. 
R: How did you reach this rule? 
P2: There are 2 circles between the first and second steps. It increases by 
two [circles], so I multiplied by 2. Then, I had to add 1 to find the 
numbers. 

Symbolic generalization - 
Verification - 
Rote calculation P2: Now it asks for the fiftieth step. 50 times 2 is 100; plus 1 is 101. 

 
As seen in this example, P2 first calculated the fourth, fifth, and tenth terms with arithmetical 

generalization. Then, s/he expressed the number of circles in the first and second steps with 
factual generalization. Lastly, she expressed the general rule with contextual generalization and 
calculated the number of circles in the fiftieth step.  
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4. Discussion 

The present study aimed to explore sixth-grade students’ pattern-generalization processes 
progressively. The results of the study revealed three generalization approaches. Through 
Approach 1, students first generalized near terms with arithmetical generalization; then, they did 
not generalize the pattern to far terms. More specifically, they expressed the general rule with 
contextual or symbolic generalization. After expressing the general rule, they verified it on given 
terms and rote-calculated far terms. Through Approach 2, students also began generalizing near 
terms with arithmetical generalization; then, they intended to find the general rule with trial and 
error. After seeing the general rule, they calculated far terms similar to Approach 1. Through 
Approach 3, the first step of students’ generalization process was to reach near terms with 
arithmetic generalization, just like Approach 1 and Approach 2. However, as different from 
Approach 1 and Approach 2, these students did not jump to find/express the general formula as 
the second step. Instead, they formed a factual generalization and reached some near terms in this 
way. On the other hand, students with Approach 3 did not reach far term generalization, either. As 
the third step, they expressed the general rule either with contextual or symbolic generalization. 
Lastly, they calculated far terms just like others.  

In light of these results, it was observed that all students followed a path from near term 
generalization to finding/expression of the general term and to rote-calculation of far terms. 
Actually, in the Pattern Questionnaire, each question had sub-questions, which were arranged 
from near generalization to far generalization and expression of the general terms sequentially 
based on Radford's (2000) generalization approach. Yet, it was revealed that students did not 
follow this path; after all, they were free to create their generalization process. While this result 
was consistent with some studies (Akkan & Çakıroğlu, 2012; Amit & Neria, 2008; Becker & Rivera, 
2006), it was inconsistent with some of them (Varhol et al., 2021). The sequence of the 
generalization process is essential since it might give important clues about students’ 
generalization skills. For example, when a student generally started with near generalization and 
continued with finding the nth term by skipping far generalization, it can be interpreted that the 
student can conduct near generalizations, as s/he is not able to conduct far generalizations 
efficiently. This might indicate the possible gap that beginning algebra students experienced 
during the transition from arithmetic thinking to algebraic thinking. Therefore, in this study, 
students’ general tendency to create a generalization process from near term to general term 
generalization by skipping far term generalization might show their possible gaps between 
arithmetic thinking and algebraic thinking.  

It was also seen that all students generalized near terms with arithmetical generalization as a 
first step of their generalization process. This result was consistent with the related literature (Amit 
& Neria, 2008; Lannin, 2004; Lannin et al., 2006; Orton & Orton, 1999; Stacey & MacGregor, 2001). 
According to the literature, it is expected that students start generalizing patterns with additive 
reasoning through arithmetical generalization (Lannin, 2004) since it is easy to add the fixed 
difference to find the next term (Garcia-Cruz & Martinón, 1998).  Additionally, it was shown that 
the nature of the patterning tasks leads students to additive thinking if the pattern is represented 
step by step (Barbosa & Vale, 2015; Lannin et al., 2006). Therefore, in the present study, students 
might find it useful and easy to apply arithmetical generalization as a first step. In addition, the 
step-by-step nature of patterning tasks might have led students to use additive relationship 
arithmetically. 

Through students’ generalization process, the absence of far term generalization was 
significant. As expressed in the findings section, all students, whatever their generalization 
approach is, firstly generalized the pattern to near terms and then looked for a general rule. When 
they found the general rule, they used it to calculate far terms by rote. The noticeable side of this 
result is the absence of generalizing the pattern to far terms with factual generalization. In other 
words, no student generalized the pattern to far terms algebraically; instead, they preferred 
calculating it by applying the general rule. While this result is consistent with some studies, which 
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reported the absence of far term generalization (Amit & Neria, 2008; Ozdemir et al., 2015; 
Somasundram et al., 2019), it was inconsistent with some studies, which reported the existence of 
far term generalization through students’ generalization processes (Cooper & Warren, 2011; Miller 
& Warren, 2012; Radford, 2003). Many studies showed the importance of far term generalization. 
Being able to generalize the pattern to far terms shows students’ conceptual understanding of the 
nature of the generalization (Lannin et al., 2006). To be able to generalize a pattern to far terms, 
students need to reach factual generalization, since factual generalization necessitates exploring 
the mathematical structure of the pattern at the numerical level. To reach algebraic generalization, 
factual, contextual, and symbolic generalizations should follow each other (Radford, 2003). Thus, it 
is essential to enable students to engage with factual generalization to generalize the pattern to far 
terms. In this study, factual generalization was seen only three times, yet students used it for near 
term generalization, not far term generalization. This result might stem from two reasons. First of 
all, as expressed before, the Turkish middle school mathematics curriculum has two objectives 
related to pattern generalization; however, those objectives do not involve the process of 
generalizing the patterns to far terms. Instead, they focus on finding and expressing the general 
rule with letters (MoNE, 2018). As parallel to the curriculum, mathematics instruction dominantly 
focused on the procedures of constructing the general rule of the pattern (Lannin et al., 2006). 
Therefore, students cannot understand the algebraic structure of the patterns (Noss et al., 1997). 
Moreover, the pattern generalization questions in Turkish mathematics textbooks generally ask 
students to write the rule of the pattern before generalizing the pattern to far terms (Ayber, 2017). 
Therefore, the reason behind the absence of factual generalization of far terms might stem from not 
spending enough time for far term generalization during mathematics lessons by focusing on 
finding a general rule as advised in the curriculum. It might also stem from the textbook questions, 
which lead to finding a general rule right after finding the known terms. 

It was also worth discussing that most students applied the standard procedure of finding a 
general rule of the pattern. In detail, all students translated all three figural pattern tasks into 
numerical patterns as a first step. Then, after the arithmetical generalization of near terms, students 
from Approaches 1 and 2 skipped the factual generalization of near and far terms and directly 
moved to find the general rule. Students from Approach 1 were aware of the standard procedure 
of multiplying the step number with a constant difference and adding or subtracting some 
number. As expressed in the results section, Approach 1 was the most observed approach. It was 
seen seven times.  On the other hand, students from Approach 2 did not have the procedural 
knowledge of multiplying the step number with a constant difference; still, they were aware of the 
procedure of multiplying the step number with a number. This result showed consistency with 
past studies (Girit & Akyuz, 2016; Lithner, 2008; Maudy et al., 2018). Literature reported that 
beginning algebra students are mostly taught routine calculations of finding the general rule of the 
patterns in traditional classrooms (Lannin et al., 2006; Maudy et al., 2018). To conduct these routine 
calculations, traditional teachers mostly tend to place numerical patterns more than figural 
patterns into the class and to construct the general formula of the patterns by just counting (Vale & 
Cabrita, 2008). This is because traditional teachers did not have sufficient algebraical knowledge 
about pattern generalization (Demonty et al., 2018). Therefore, they generally prefer to translate a 
visual pattern into a numeric pattern (Vale & Cabrita, 2008). Yet, seeing a visual pattern is so 
important in constructing algebraic generalization. Lee and Wheeler (1987) stated that students 
experience difficulty in “seeing an algebraically useful pattern” by focusing on numerical aspect of 
patterns’ structure (p.95). In a study (El Mouhayar & Jurdak, 2016), students used numerical 
approaches at near and far generalizations and figural approaches to generalizing the pattern to 
any term. Consistently, a study conducted by El Mouhayar (2018) reported a higher level of 
reasoning and generalization in the figural approach than the numerical approach in pattern 
generalization at each grade level. It was also reported that students with figural thinking are more 
tended to explore the algebraic relationship between terms and term numbers, while students with 
numeric thinking are more tended to trial and error with an inadequate understanding of the 
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pattern’s structure (Becker & Rivera, 2005). In the present study, students’ translating figural 
patterns into numerical patterns and applying standard procedures of finding the general rule of 
the pattern might stem from students’ habits of dealing with numerical patterns in procedure-
focused classroom environments. Furthermore, students’ tendency to translate figural patterns 
into numeric patterns might have prevented them from seeing the algebraic structure of the terms 
and led to the application of memorized standard procedures. 

These findings are limited to the data collected from the beginning algebra students from one 
public school in Türkiye. Nevertheless, the generalization approaches of beginning algebra 
students might vary in different countries. Therefore, further research could be conducted to 
explore the generalization approaches of beginning algebra students at the international level. 
Furthermore, the results of the present study are limited to the sixth-grade students’ trends of 
pattern-generalization approaches. Nonetheless, some of the past studies reported progressive 
development of students’ algebraic reasoning across grade levels, while some studies found 
similar algebraic generalization structures regardless of grade levels at the middle school level. 
Thus, further study could be conducted with the 6th, 7th, and 8th-grade levels to see whether there is 
a progressive development across grade levels in Turkish scope. 

In sum, it is believed that the results of the current study would expand the horizons of 
mathematics teachers and curriculum developers in some ways. Firstly, the middle school 
mathematics curriculum can allocate enough time for students to gain the objective of exploring 
the flow from the near term to the far term generalization as well as from the arithmetical 
generalization to algebraic generalization. Mathematics teachers can avoid creating a procedural 
instructional environment by focusing on the rote procedure of finding the general rule of a 
pattern. Also, patterns’ figurative structures can be emphasized conceptually before the numerical 
structures during mathematics lessons. Teachers can enhance their knowledge of the transition 
from arithmetical to algebraic generalization through seminars or workshops. 
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