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This study aimed to examine whether a computational thinking (CT) intervention related to a) number 
knowledge and arithmetic b) algebra, and c) geometry impacts students’ learning performance in primary 
schools. To this end, a quasi-experimental, nonequivalent group design was employed, with 61 students 
assigned to the experimental group and 47 students to the control group (n = 108). The experimental 
group comprised students in primary school who were to be followed across the second and third grades. 
The experimental group underwent work with digital CT activities, while the control group did not 
receive such interventions. A one-way analysis of variance (ANOVA) was performed on the data gathered 
to assess the ability differences between students from the experimental and control groups. The pre-and 
post-test results revealed that the experimental group’s performance was significantly better than the 
control group’s performance for the content areas involving CT activities.   
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1. Introduction

Computational thinking (CT) is central to the discussion on using technology's potential for 
education in many countries worldwide (e.g., Bocconi et al., 2016; Brown et al., 2014; Niemelä et 
al., 2017). Not surprisingly, CT has been implemented for example in the curricula of several 
Nordic countries (Bocconi et al., 2016). This reflects that many now acknowledge that CT is as 
fundamental as numeracy and literacy skills (e.g., Wing, 2006; Barr & Stephenson, 2011; Grover & 
Pea, 2018).  

Therefore, CT has been increasingly linked to and discussed in the context of mathematics 
curricula in particular—that is, whether it should be a part of curricula (e.g., Weintrop et al. 2016). 
Integrating CT with mathematics in the classroom can create the opportunity to present authentic, 
real-world examples that enhance students' mathematical thinking (Weintrop et al., 2016; Pérez, 
2018). However, this growing interest in integrating CT into a mathematics curriculum or 
classroom activities has proven to be challenging (Israel & Lash, 2020; Grover & Pea, 2018; Bocconi 
et al., 2016). Few studies have investigated using CT with mathematics in primary schools in 
Nordic countries, while multiple studies elsewhere have focused on middle, high, and college 

Address of Corresponding Author 

Camilla Finsterbach Kaup, University College of Northern Denmark, Mylius Erichsens Vej 137, 9210 Aalborg, Denmark. 

   cfk@ikl.aau.dk  

How to cite: Kaup, C. F., Pedersen, P. L., & Tvedebrink, T. (2023). Integrating computational thinking to enhance students’ 
mathematical understanding. Journal of Pedagogical Research, 7(2), 127-142. https://doi.org/10.33902/JPR.202319187 

https://doi.org/10.33902/JPR.202318531
https://orcid.org/0000-0001-7442-9174
http://www.orcid.org/0000-0002-7746-4386
http://www.orcid.org/0000-0002-9292-8476
mailto:cfk@ikl.aau.dk
https://doi.org/10.33902/JPR.202319187


C. F. Kaup et al. / Journal of Pedagogical Research, 7(2), 127-142    128 
 

 

 
 
 

students (Sung & Black, 2021). Further research is thus needed to understand how CT relates to 
mathematics in a practical classroom setting at the primary school level, including in the Nordic 
countries. 

This study aims to examine whether a CT intervention related to geometry, algebra, and 
number knowledge may impact students' development in these three areas in primary schools in 
Denmark. The following sections present theories regarding CT and its connection to the three 
domains of mathematics: a) number knowledge and arithmetic, b) algebra, and c) geometry. 

2. Computational Thinking and Mathematical Domains 

The term computational thinking is attributed to Papert (1980), who argued that programming 
and CT support and develop students' mathematics through testing, evaluating, and correcting 
their ideas with coding (Papert, 1980; 1996). Papert's ideas about CT were seen to develop one's 
mathematical understanding, but he did not have much influence on the mathematical curriculum 
at the time. This may have been because digital technology had not yet developed and become a 
natural part of people's daily lives (Kotsopoulos et al., 2017).  

Wing (2006) discussed CT about 30 years later, arguing that it should be taught on the same 
level as reading, writing, and math in schools. She defined CT as an approach used to solve 
problems, design systems, and understand human behavior founded on computer science 
concepts (p. 33). Wing (2006) argued that CT “represents a universally applicable attitude and skill 
set everyone, not just computer scientists, would be eager to learn and use” (p. 33). According to 
Wing's approach, CT could be perceived as part of all subjects across the school system and does 
not particularly relate to mathematics. Nevertheless, research has shown that participating in CT 
activities can benefit an individual's mathematical abilities (e.g., Clements, 2002). Various studies 
have been conducted on disparate mathematical topics, for example, geometry; these intervention 
studies have often been based on games, and programmed robots, for example, “turtle geometry” 
(e.g., Hickmott et al. 2018). Across countries, there is growing interest in integrating CT and 
mathematics; however, finding a way to integrate the two disciplines in a meaningful manner 
remains a challenge (e.g., Israel & Lash, 2020; Grover & Pea, 2018). The integration of CT with 
mathematical domains has often been considered concerning overall mathematical understanding. 
Studies have not investigated how CT influences individual domains in a single study. In the 
following sections, we briefly discuss the following three mathematical domains: a) arithmetic b) 
algebra and c) geometry, including how CT may be connected in these three domains. 

2.1. Arithmetic in Relation to Computational Thinking 

The distinctions and similarities between number knowledge, operations, and arithmetic within 
mathematics are complex and multifaceted (Van de Walle, 1998). When connected to CT, they 
become even more complex. In this section, we define arithmetic as the inclusion of both number 
knowledge and the four operations in arithmetic. Arithmetic is a domain that has a long tradition 
and is not merely connected to a mathematical topic in school. For example, Lakoff and Núñez 
(2000) argued that learning arithmetic concepts begins earlier than mathematical instruction in 
school and is based on everyday experiences, constructed representations, and metaphorical or 
symbolic thought. They emphasized that humans learn abstract concepts through concrete 
representations and situations, so learning and understanding numbers are based on conceptual 
metaphors. Lakoff and Núñez (2000) defined four arithmetic metaphors: object collection, object 
construction, the measuring stick, and the object along a path. We argue that all four metaphors 
are present in many activities associated with CT. For example, CT activities may be based on the 
definition of an object or construction of the objects to be worked on or may even involve a robot 
moving a defined distance. We note that Lakoff and Núñez’s research is based on a theoretical 
approach to arithmetic.  

Recently, research has been conducted on CT and arithmetic in empirical studies. Xu et al. 
(2022) found that arithmetic fluency mediates the connection between CT and reasoning ability, 
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indicating that these three concepts might share conceptual commonalities. It has also been found 
that CT does not necessarily lead to an improved understanding of numbers. For example, in Chan 
et al. (2021), students did not significantly improve their ability to solve number patterns through 
CT activities. Overall, how CT and arithmetic can support or share common ground is unclear. 

2.2. Algebraic Thinking in Relation to Computational Thinking 

In the mathematical domain of algebra, there has been much attention to this domain within the 
mathematical research community during the last year. Over the last few decades, algebra and 
algebraic reasoning have moved down the school system from higher education to the primary 
school level (Kieran et al., 2016). There are multiple definitions of algebraic thinking, each 
stemming from discussions of the reasoning and approaches used in this domain. Studies involve 
a broad range of discussions, including the types of reasoning and approaches to the 
representation used when engaging in algebraic work, especially when defining algebra in the 
school context (e.g., Kaas, 2022; Kaput, 2008; Kieran et al., 2016). For example, Radford (2018) 
defined algebraic thinking as involving a) indeterminate or unknown quantities, b) culturally and 
historical modes of representing or symbolizing these unknown quantities, including operations, 
and c) analytically working with these unknown quantities. Radford emphasized the importance 
of the symbolic representations of unknown quantities. Another central definition targeting early 
algebra – that is, algebra in earlier grades– was given by Kaput (2008) in terms of three strands: a) 
the study of structures, b) the study of functions, and c) the application of a cluster of modeling 
languages. These can be found inside and outside mathematics or in the mathematics classroom. 
When considering these two central definitions of CT, the question is whether programming 
language can be perceived as a central element of CT, a culturally developed system of symbolic 
representations, with programming and algebra being two sides of the same coin regarding 
content. However, when defining CT as a broader concept (e.g., Wing, 2006), it is not narrowly 
connected to programming and the languages involved in this process. CT is a way of solving 
problems. More specifically, it can be argued that CT is a fundamental way of systematically 
solving problems (Wing, 2006).  

This broader approach to understanding CT is supported by Bagley and Rabin (2015), who 
showed that CT could enhance algebra learning. Their study revealed that undergraduate students 
use computational modes of thinking in various creative and reflective ways when working with 
linear algebra, thus indicating that CT involves learning a symbolic representation of language and 
a broader problem-solving process.    

2.3. Geometry in Relation to Computational Thinking 

Studies have found and elaborated on the connection between computational stimuli and students' 
sense of geometry (Echeverría et al., 2019; Papert, 1996; Barcelos et al., 2018). For example, based 
on observations from Mindstorms (1996), which involved students playing with robot turtles, 
Papert (1996) found parallels between the turtle system of computational geometry and Euclid's 
axiomatic geometry. For example, Clements et al. (2001) found that elementary school students 
could learn geometric ideas by participating in CT activities. 

A case study with fourth graders found that CT activities enhance students' motivation and 
performance in geometry (Echeverría et al. 2019). In Niemelä’s (2018) study, geometry was the 
most popular subject when combining CT with mathematical topics: 54.7% (N = 206) of the 
participating teachers sketched out geometry-oriented lessons, whereas about 20% of the teachers 
chose topics from either algebra or arithmetic. 

When considering CT, geometry is often linked to spatial reasoning (Città et al., 2019; Lee, 
2019). For example, a positive correlation between CT skills and mental rotation has been found. 
There appears to be a logical link between spatial thinking/reasoning and geometry since spatial 
reasoning involves knowing the shape of one's environment, which is also essential to the 
mathematical understanding of geometry (Clements & Sarama, 2004). One aspect of spatial 
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reasoning involves knowing the shape of one's environment, which is also crucial to a mathematic 
understanding of geometry (Clements & Sarama, 2004).  

However, the definitions of the mathematical differences and similarities between geometry 
and spatial reasoning need further investigation. One could argue that geometry is based on a 
mathematical theoretical approach, whereas spatial thinking is based on a cognitive psychological 
framework. In the present study, spatial reasoning/thinking was considered part of developing 
students' understanding of geometry, emphasizing that the connection between CT and geometry 
is likely linked to spatial thinking and reasoning.  

2.4. Present Study 

Although past studies have examined CT in relation to different mathematical topics, there appear 
to be very few studies that have investigated the effects of CT interventions on students’ progress 
in each of these topics in primary school. Therefore, the following question guided the present 
study: 

RQ) Do two groups of elementary school students, one with a CT intervention (experimental) and the 
other without intervention (control), differ in their learning progress in three mathematical topics: a) 
number knowledge and arithmetic, b) algebra, and c) geometry? 

If so, we need to ask how this can be explained through students' work with digital 
computational thinking activities. This paper will not address this question directly, but will 
provide a short discussion of two interventions as a way to provide initial insights.  

3. Materials and Methods 

Our larger study consists of a mixed-methods sequential design. We conducted a quasi-
experiment with non-equivalent groups at pre- and post-test to collect quantitative data. A control 
group was compared with the experimental groups, with 61 students in the experimental group 
and 47 in the control group (n = 108). The pre-test and post-test non-equivalent group design 
examined whether one group of students benefited from the intervention. Table 1 shows the 
experimental and control groups. By gathering information sequentially, we expand our 
quantitative results with observations between pre-and post-test (Creswell and Creswell, 2018).  In 
this paper, we mainly report on the quantitative part of the study. We also provide preliminary 
insights into our qualitative analysis by describing two selected parts of the intervention with 
connections to the literature discussed above. 

Table 1  
Experimental design in this present study 
Group  Intervention  

Experimental Group Pretest CT Posttest 
Control Group Pretest  Posttest 
 

The students in the two groups were pre-tested using a first-grade mathematical test before the 
intervention. Both groups were assessed with a third-grade post-test after the intervention. The 
mathematical test is explained in section 3.4. 

In the experimental approach, looking at the relationship between cause and effect is 
fundamental. The concept of validity deals with the independent variable showing an effect in the 
dependent variable and that this effect is not due to other factors. The quantitative part of the 
study has a descriptive aim. The focus has been on whether working with CT may lead to better 
performance in mathematics. A causal question can be viewed here as the cause of an effect, where 
a cause (in this case, a CT intervention) leads to an effect (improved understanding and 
achievement). In this form of knowledge development, X leads to Y by viewing the cause-effect 
relationship (Shadish et al., 2002). From this research approach, it will be possible to draw 
conclusions that tell whether X leads to Y, but it may be challenging to say anything about why X 
has led to Y. As mentioned above, this article will only give preliminary insights into the 
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qualitative analysis by presenting a brief description of the intervention, focusing on two examples 
centered on the use of robots and CT in mathematics. The article's primary focus will be to present 
the results from the quantitative part of the study, focusing on the students' pre- and post-tests. 

3.1. Participants 

The school administrations in the Northern Denmark municipalities were contacted to gain access 
to the schools. Teachers were recruited using purposive sampling based on the socio-economic 
factors of the schools, their experience with digital technology, and their commitment to 
mathematics education. Suter et al. (2006) found that purposive sampling could be helpful when 
working with a quasi-experimental approach to educational research, as there is a need for 
researchers and school staff to be able to work together. Table 2 sums up the students' data. 

Table 2  
Students participants  
 Students Total Boys Girls Socio-economic status 

Intervention 61 30 31 Middle SES 

Control  47 27 20 Middle SES 
 

The intervention carried out in the 2019/2020 and 2020/2021 school years required close 
collaboration with teachers. Therefore, teachers need to know the expectations for participation 
and be willing to spend time developing their practice.  

Schools that expressed an interest in participating in the intervention component all received a 
letter regarding the intervention. One school was accepted to participate in the intervention with 
three classes. Two schools then indicated they would be willing to participate as control schools; 
one participated with one class and the other with two. The selection itself was thus voluntary, 
which impacts our ability to generalize data (Creswell & Creswell, 2018). Before the study began, 
consent forms were obtained from the student's parents to collect observation data from the 
intervention classes and student test responses. This allowed subsequent analysis of the data at the 
student level. Consent forms were also obtained from the teachers to observe their teaching. 
Furthermore, all participants were provided anonymous ID numbers, and all data was labeled.  

3.2. The Target Group of the Intervention 

In this intervention, the 2nd-grade classes would be followed for two years. The purpose is to 
follow the classes over a more extended period and conduct observations and time with reflection 
to determine whether CT became an integral part of their teaching practice under the intervention. 
Additionally, the target group was chosen to study how CT could be used in mathematics in 
primary school since CT has been understudied at the primary level (Lee et al., 2022; Chongo et al., 
2020).  

3.3. Procedure 

The procedure can be explained in Tables 3 and 4. The teachers in the experimental group 
participated in two workshops to learn about CT and technology. The first workshop focused on 
CT and how to relate it to mathematical content specific to 2nd grade. The second workshop had 
the same focus but was geared toward third-grade students. Tables 3 and 4 show how data was 
collected. The tables include the date of the workshop, the test, the reflection or observation, and 
the time in minutes. It also includes which technology was featured and what mathematical 
content the student is required to learn. The teachers in the experimental and control classes had 
the same information about the mathematical test and how to perform it.  

As is shown in Tables 3 and 4, there was a change between reflection and observation in the 
classroom for the experimental group. The reflections work as a formative intervention, where the 
teachers and researcher (author number one) discuss the previous observation. This reflection 
helps the teachers across the three classes develop their teaching and make didactical choices on 
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Table 3  
Data collection in the experimental group  
 Workshop  Pretest Reflection Observation  Reflection Observation Reflection Interview 

Date 03.9.2019 September  
2019 
Experimental 
And control 
classes 

25.9.2019 A: 
29.10.2019 
B: 
31.10.2019 
C: 
01.11.2019 

13.11.2019 C:  
28.11.2019 
A:  
03.12.2019 
B:  
12.12.2019 

29.01.2020 02.07.2020 
 

Minutes 360   72  A: 105  
B: 95  
C: 105  

80  C: 105  
A: 125  
B: 105  

81  55  

Technology    BeeBot  Beebot   

Mathematical 
content  

   Numbers 
The student 
can use 
multiple-
digit natural 
numbers to 
describe 
number and 
sequence. 
The student 
has 
knowledge 
of the 
structure of 
natural 
numbers in 
the number 
system. 

 Geometry 
 The student 
can 
categorize 
planar 
figures 
according to 
geometric 
properties. 
The student 
has 
knowledge 
of geometric 
properties 
of plane 
figures. 

  

 

Table 4  
Second year of the intervention in the experimental group  
 Workshop Reflection Observation  Reflection Reflection Observation Posttest Reflection 

Date 01.09.2020 21.10.2020 
 
 
 

B:  
22.09.2020 
C:  
25.09.2020 
A: 
23.10.2020 
30.10.2020 

02.12.2020 07.04.2021 A: 
04.05.2021 
05.05.2021 
06.05.2021 
C. 
07.05.2021 

June 2021 
Experimental 
And control 
classes 

28.06.2021 

Minutes 360  68  B: 60  
C: 60  
A: 90 + 90  

53  79  A:  
150   
150   
150  
C: 60 

 116  

Technology   Scratch  
Ozobot 
Micro:bits 

  Scratch  
Ozobot 
Micro:bits 

  

Mathematical 
content  

  Geometry  
The student 
can discover 
relationships 
between 
planes and 
simple spatial 
shapes. The 
student has 
knowledge of 
geometric 
properties of 
simple spatial 
figures. 

  Numbers  
The student 
can recognize 
simple 
decimals and 
fractions in 
everyday 
situations. 
The student 
has 
knowledge of 
simple 
decimals and 
fractions. 
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integrating CT in their mathematical teaching. The students had five weekly mathematics lessons, 
and teachers integrated CT's work into the math lessons. All quotes included in the article are 
translated from Danish to English. 

3.4. Measurements 

A pre-and post-test was conducted to examine students' mathematical skills development. CT 
skills were not directly measured but discussed during the teacher reflection meetings. 
Measurements were thus made in both intervention and control schools. The pre-test was 
administered as a baseline during the first month of the 2019/2020 school year. The post-test was 
administered as an endline at the end of the 2020/2021 school year. Intervention teachers were 
informed that they could only begin the actual intervention part after the test. 

Students' mathematical skills were measured using a standardized test designed to measure 
students' skills related to the curriculum and students' specific grade levels. The test measures 
students' skills, knowledge, and competencies in the following subject areas: number and algebra; 
geometry and measurement; statistics and probability (Gyldendal: Om Matematikprofilen, n.d.). 
The test is validated using psychometric analysis and is thus expected to provide a valid measure 
(Kreiner, in press). A Rasch test was conducted to assess the scale's psychometric properties and 
conducted various tests, including local independence, targeting, midpoint, location, item fit, and 
ordered response categories (Kreiner, in press).  

The mathematics test provides an overall score that classifies students into five categories. The 
categories are used to tell the student's current level at the end of the grade. The categories are as 
follows: 1 started, 2 in progress, 3 well underway, 4 longer than expected, and 5 much longer than 
expected.  

In the pre-test, students completed Matematikprofilen to grade 1, wherein in the post-test, they 
completed the test to grade 3. Students who perform well in the 1st-grade test will have 
progressed accordingly in the 3rd-grade test if they score similarly. Additionally, if the student 
improved his or her score from 1st to 3rd grade, this would indicate progress. The same student 
would experience a decline if, on the other hand, the student was placed at the "in progress" level. 
Student progress can be determined through test analysis by comparing 1st to 3rd-grade results. 
The tests were chosen to consider the students' natural development, as intervention and control 
classes are followed throughout the two grades (Creswell & Creswell, 2018). Assessments of 
students' mathematical proficiency are criterion-referenced and based on curriculum from the 
Danish ministry. The assessment consisted of 54 questions with three parts: A, B, and C. All three 
parts tested students' skills, knowledge, and competencies in mathematical subject areas and 
mathematical competencies. Tasks in part A are based on subject areas, tasks in part B are based on 
both subject areas and competencies, and tasks in part C are based on competencies. 

3.5. Strategy for Statistical Analysis  

A pre-and post-intervention test assessed each student. An overall score and topic-specific scores 
are calculated and standardized according to each topic's maximum obtainable overall score. 
Visual inspections of the standardized score indicated a sufficient fit to normality to apply 
ANOVA and t-tests to assess the study’s hypotheses. The table below shows the kurtosis (a 
measure of tailedness of the distribution) and skewness computed and reported for the overall 
data (i.e., divided by intervened and non-intervened topics) and topic-specific values. We have 
tested against the theoretical values for a normal distribution. The deviations are not greater than 
what can be accepted for the t-test, as this test is very robust to deviations from normality. Their 
means are compared due to the central limit theorem.  
To evaluate the hypotheses, the difference in standardized overall scores within the intervention 
and control groups was assessed by two paired t-tests. These differences include intervened topics 
(algebra, geometry, and numbers) and non-intervened topics (motion, measuring, probability, and 
statistics), where a significant difference would suggest an overall effect of the intervention. 
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 Table 5  
Kurtosis and skewness 
Intervention Topic Kurtosis 𝑝 Skewness 𝑝 
Overall 

Reference 
Reference 
Intervention 
Intervention 

Topic specific 
Reference 
Reference 
Reference 
Reference 
Reference 
Reference 
Reference 
Intervention 
Intervention 
Intervention 
Intervention 
Intervention 
Intervention 
Intervention 

 
Intervened topic 
Non-intervened topic 
Intervened topic 
Non-intervened topic 
 
Algebra 
Geometry 
Numbers 
Motion 
Measuring 
Probability 
Statistics 
Algebra 
Geometry 
Numbers 
Motion 
Measuring 
Probability 
Statistics 

 
3.75 
2.93 
2.71 
4.15 

 
4.54 
2.57 
2.62 
3.37 
3.26 
3.27 
2.98 
3.43 
2.36 
2.30 
3.58 
2.63 
3.30 
3.12 

 
0.04 
0.83 
0.39 
0.01 

 
0.02 
0.49 
0.51 
0.53 
0.65 
0.66 
0.97 
0.42 
0.22 
0.18 
0.27 
0.51 
0.60 
0.84 

 
0.23 
0.40 
0.18 

−0.07 
 

0.41 
0.01 
0.41 
0.70 
0.22 

−0.25 
0.54 
0.29 

−0.11 
−0.13 
−0.02 

0.10 
0.01 
0.45 

 
0.23 
0.02 
0.32 
0.66 

 
0.20 
0.97 
0.16 
0.03 
0.44 
0.42 
0.09 
0.30 
0.70 
0.63 
0.93 
0.74 
0.98 
0.13 

 

In addition, similar statistical comparisons were made for each topic-specific difference, where 
significant differences would indicate an effect of the intervention on the specific topic. This holds 
for both the intervened and non-intervened topics, i.e., would test for both intended intervention 
improvements and side effects (a general improvement from increased mathematical skills and 
understanding or deterioration due to e.g., increased focus on the intervened topics). A Benjamini-
Hochberg adjustment was used to account for multiple testing.  

Based on their overall scores, the students were categorized into five groups according to pre-
specified bins on the scores. It is interesting to investigate if the intervention or other demographic 
variables (e.g., gender) improved the mobility probability of moving from a lower to a higher-
ranking group. To assess this hypothesis, ordinal regression was used to test for the significant 
effects of such influences. The estimated ordinal regression can be used to predict the expected 
mobility probabilities, where increased probabilities for the intervention group in moving to 
higher categories is one way of reporting the effect of the intervention on a categorical level. 

4. Results  

Across the specific topics comparison of the two teaching approaches (intervention and control) 
showed a significant improvement in the scores for the intervention group (𝑝-value < 0.001). The 
control group showed no significant improvement (𝑝-value = 0.9).  

Table 6  
The overall comparison between groups 
Approach Difference of differences Reference difference Intervention difference 𝑝 
Intervention 13.10 (8.15; 18.04) 6.53 −6.57 0.00 
Control 0.38 (−5.78; 6.53) 1.06 0.69 0.90 
 

To account for multiple testing, the p-values for the individual topics were adjusted using the 
Benjamini-Hochberg approach (cf. Table 7). The adjusted 𝑝-values in the table show that the 
differences between the intervention and control groups are significant for algebra, geometry, and 
numbers (the intervened topics). In contrast, the differences are insignificant for the remaining 
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topics. However, we see a close-to-significant effect (adjusted 𝑝-value = 0.08) for a worsening in 
the probability of the intervention. 

Table 7  
The 𝑝-values for each topic in the test 
Approach Difference of differences Reference difference Intervention difference 𝑝-adjust 
Algebra 11.85 (4.33; 19.38) 10.83 −1.02 0.01 
Geometry 18.70 (7.93; 29.48) 3.95 −14.75 0.01 
Numbers 8.73 (2.09; 15.37) 4.80 -3.94 0.02 
Motion 4.22 (−10.05; 18.48) 13.94 9.72 0.57 
Measuring 2.22 (−5.52; 9.95) 0.14 −2.08 0.57 
Probability −12.08 (−23.84; −0.31) −28.91 −16.83 0.08 
Statistics 7.15 (−2.17; 16.47) 19.09 11.94 0.18 
 

In Figure 1, the boxplots show the differences in percentage (of the total obtainable score) 
between the post- and pre-tests for each student. We see that differences for the intervention group 
are positive for the three intervention topics. The topic probability shows a negative difference 
between the intervention and the reference group. However, both groups showed progress during 
the intervention time. In the topic statistics, both groups show a negative development with almost 
no difference between the two groups. In the topic, measuring, the results show almost no 
development in both groups during the intervention. In the last topic, motion, the results show a 
negative development for both groups; hence, the intervention groups’ median is higher than that 
of the reference groups. 

Figure 1  
Boxplots with differences in percentage 

 

In Table 8, the empirical relative frequency of the mobility rates is given for the reference and 
intervention groups. The table shows that the chance of moving upwards in category (i.e., in terms 
of ‘performance level’) increases in the intervention group compared to the reference group.  
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Table 8  
Empirical relative frequency of the mobility rates 
   Post-category 

Intervention Pre-category n 1 2 3 4 5 

Reference 1 4 50% 50.0%    
Reference 2 18  44.4% 50% 5.6%  
Reference 3 20  10.0% 60% 30.0%  
Reference 4 13  7.7% 23% 46.2% 23.1% 
Intervention 1 1   100%   
Intervention 2 34  5.9% 38% 50.0% 5.9% 
Intervention 3 23    52.2% 47.8% 
Intervention 4 5     100.0% 

 

These empirical findings are further supported by the estimated probabilities based on the 
ordinal regression. In the plot below, the probabilities are visualized, where light gray labels 
highlight the improvement probabilities, white the neutral, and in dark gray the worsening 
outcomes (i.e., decreasing the category). It is clear that the intervention group has a higher chance 
of ending up in the higher categories, and in particular, improving by more than a single category 
is notably higher for the intervention group. 

Figure 2  
The estimated probabilities based on the ordinal regression 

 

5. An Illustration of the CT Interventions 

This study examines whether a CT intervention can improve students' learning in primary schools. 
Results presented in the previous section suggest that it may have been the case for the Grade 2-3 
classes studied. In this section, we will briefly describe selected parts of the intervention, with 
connections to the literature, as a way to provide preliminary insights into explaining why this 
may be the case. 
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5.1. BeeBot and Geometry 

The following example describes an activity from the first year of the intervention, where the 
student in 2nd grade worked with a robot called BeeBot. The task described in this example was the 
fourth task of a teaching sequence. Students worked in pairs with one robot per pair, and 10 
groups were in the class. 

When introducing the task, the teacher drew on students' preexisting knowledge of polygons' 
characteristics and previous work with the robot. The student's job was to determine, through 
problem-solving, whether the robot, which makes 90-degree turns, could make a series of 
polygons numbered 1–10. First, the students had to count the angles and sides of each polygon. 
Second, they had to collect square magnetic tiles from the teacher and program the robot to create 
the polygon. The purpose of the magnetic tiles was to increase students' ability to understand and 
visualize the robot's movements. We argue that the students were using pattern recognition as 
they decomposed the movement of the BeeBot. The tiles thus worked as a mediating artifact to 
help students visualize creating an algorithm for the robot to design a polygon, as seen in Figure 3. 
The magnetic tiles further helped the students grasp spatial thinking by working with the tiles and 
BeeBot (Clements & Sarama, 2004). 

Within their groups, students discussed how to create the different polygons. Some students 
used gestures to communicate which way the robot should turn. For example, if the robot were 
supposed to turn to the right, the student would first move their body to the right before pushing 
the button to make the robot move to the right. Other students used the word “right” and gestured 
to the right with their bodies when the robot should turn to the right. This relates to what Sung et 
al. (2017) argued that an embodied approach may help make the thought process more explicit and 
visible. At the start of the task, most groups used the magnetic tiles. However, after the first few 
polygons were built, it appears that they could internalize the structure of the magnetic tiles and 
complete the remainder of the task without using them. The magnetic tiles, therefore, could be 
seen as serving as an auxiliary artifact until the students did not need them anymore. The activity 
became more student-centered when the students no longer needed the magnetic tiles and 
attempted different solutions to complete the task. To complete the assigned task, some students 
counted the sides of the polygons using language, whereas others used their fingers to count or 
draw on paper.  

Figure 3 
Students on the floor working with BeeBots and magnetic tiles 

 

For this task, we argue that students used CT to relate to the robots and then created an 
algorithm to instruct each robot to make a polygon. In this case, the robots act as a mediating 
artifact through which students may learn to describe and make representations of different 
polygons. The robots help students shift between different semiotic representations, both polygons 
made using the robots and drawings by hand (Barcelos et al., 2018).  

    The instructional task allows students to think mathematically using CT practices such as 
pattern recognition and decomposition in connection to geometry (Pei et al., 2018; Clements & 
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Sarama, 2004). The end of the lesson included a shift back to a teacher-centered perspective as the 
teacher guided the students in identifying the task’s pattern; this helped the students establish a 
relationship and identify patterns between the different polygons (Barcelos et al., 2018). This last 
step enabled the teacher to identify students’ misconceptions and support them in developing a 
deeper understanding of the concepts. During a class discussion, each group demonstrated and 
drew the polygons from the task on the blackboard. One group was convinced that the robot could 
make a nine-sided polygon, and they were asked to make an argument for their solution. During 
their presentation on the blackboard, the students discovered that they had been drawing an eight-
sided polygon instead of a nine-sided one. In this example, the students used evaluation and 
argumentation to determine whether their solution was correct. Argumentation was then used to 
help students identify a pattern in the creation of the polygons. With help from the teacher, the 
students observed that BeeBot could only make polygons with even sides and right angles. The 
students, therefore, learned that the robot could make polygons with four, six, eight, or 10 sides. 
Through the final discussion, the students learned how to describe and represent models of 
different polygons with the help of the robots by using mathematical and algorithmic language 
that, according to Barcelos et al. (2018), explains and reveals the student’s understanding of the 
problem-solving process. 

5.2. Micro:bit and Calculation 

In the second year of the intervention, students worked on making a calculator with a micro:bit. 
Students worked together in pairs and followed an introduction through video. On one computer, 
the students watched the video; on the other, they created an algorithm through block 
programming in the program MakeCode. As the student watched the video, they could stop at any 
time, make the same block as shown, and then create the algorithm step-by-step. Figure 4 shows 
two students creating the calculator in MakeCode on one computer and watching a video on the 
other. 

Figure 4  
Two students creating the calculator in MakeCode 

 

After making the algorithm, the students tested it in MakeCode before downloading it on the 
micro:bit. After completing the download to the micro:bit the student got an assignment from the 
teacher. As seen in Figure 5, the teacher presented the assignment on the smartboard and paper. 
One student had to calculate multiplication through micro:bit, and the other had to do it by hand. 
Some students found that the input and display of numbers were not optimal on the micro:bit. If 
the product exceeded two digits, entering and reading the display took too long. Likewise, some 
students found they were faster than the micro:bit at doing the calculations in this case. In this 
lesson, students were introduced to using variables to store data and as the results of mathematical 
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operations. As Lakoff and Núñez (2000) note, students learn via concrete representations such as 
the micro:bit as a calculator. We argue that this task also illustrated students’ CT thought process 
since students could recognize when it is more efficient to let the computer do the work or 
calculate it themselves. 

Figure 5  
The teacher presents the assignment 

 
 

During the intervention, the teachers noticed that some students were growing in the 
classroom. "...there are certainly some children who come up with the oral because they think you 
are talking to a toy rather than doing something right or wrong. Some kids are beginning to use 
mathematical language" (Teacher, C class, CL-2). The teachers also reported that some students 
talked more about math than they usually do in their ordinary math lessons. 

6. Discussion and Conclusion 

This paper presents a quasi-experiment with pre- and post-test. Our quantitative results (e.g., those 
summarized in Table 8 and Figure 2) showed that the intervention group significantly differed, 
compared to the reference group, in their performance on the tests about the ‘intervention topics’, 
namely: numbers, algebra, and geometry. These results suggest that students benefitted from the 
CT intervention. Furthermore, in the intervention group, students were more likely to move up 
one or more categories (i.e., performance levels) from the pre-test to the post-test than in their 
control group. These results are consistent with those reported by Bagley and Rabin (2015), who 
found that CT could enhance algebra learning. Especially when using various creative and 
reflective approaches, thus implying that CT involves learning a symbolic representation of 
language and a wider problem-solving approach. Xu et al. (2022) also argue that arithmetic fluency 
mediates the link between CT and reasoning ability, indicating a conceptual similarity between 
these three concepts. As in geometry, Echeverría et al. (2019) found that CT activities may enhance 
motivation and performance. By contrast, Chan et al. (2021) found, in their research involving 
Secondary One students, that CT activities did not significantly improve the students’ ability to 
solve number patterns. As one can see, studies related to CT and mathematics have produced 
divergent conclusions, which could potentially be explained by numerous factors, such as the type 
of CT task studied, the pedagogical context, etc.  Nevertheless, several studies led to suggest that 
CT can help mediate and create representations that students must relate to when working with 
technologies. This can be accomplished through embodiment and explanations to other peers 
(Sung & Black, 2021). In the study by Sung and Black (2021), it was found that working with 
computational perspectives, including robots, could help make thought processes more explicit 
and transparent. We argue that this could explain why, in our study, all students in the 
intervention class moved one or more categories on the mathematical test.  

A limitation of quasi-experimental studies is that randomization is not used, which limits the 
ability to conclude causal associations between interventions and outcomes (Creswell & Creswell, 
2018). However, our study suggests a significant effect on the specific topics that the students in 
the study had worked on in their math lessons. The teachers in this project were self-selected both 
in the intervention and control classes. To avoid selection bias, the intervention and control 



C. F. Kaup et al. / Journal of Pedagogical Research, 7(2), 127-142    140 
 

 

 
 
 

teachers completed a survey to map their knowledge of using CT and robots in an educational 
context. This was to ensure they were at the same level of expertise when working with 
technology. Both groups of teachers had only limited or no previous knowledge of using CT or 
robots in their teaching. Preliminary insights into this intervention may suggest an increase in 
students' mathematical knowledge: teachers reported observing that students, when working with 
robots, create new relationships and a new division of labor in the classroom, and that they may 
use mathematical expressions more precisely when using robots. They also observed that students 
showed greater motivation when working with robots and collaborated more than usual during 
math lessons. These processes, however, should be studied in more depth in future studies. 
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