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The COVID-19 pandemic has had a significant impact on high-stakes testing, including the national 
benchmark tests in South Africa. Current linear testing formats have been criticized for their limitations, 
leading to a shift towards Computerized Adaptive Testing [CAT]. Assessments with CAT are more precise 
and take less time. Evaluation of CAT programs requires simulation studies. To assess the feasibility of 
implementing CAT in NBTs, SimulCAT, a simulation tool, was utilized. The SimulCAT simulation 
involved creating 10,000 examinees with a normal distribution characterized by a mean of 0 and a 
standard deviation of 1. A pool of 500 test items was employed, and specific parameters were established 
for the item selection algorithm, CAT administration rules, item exposure control, and termination criteria. 
The termination criteria required a standard error of less than 0.35 to ensure accurate abilities estimation. 
The findings from the simulation study demonstrated that fixed-length tests provided higher testing 
precision without any systematic error, as indicated by measurement statistics like CBIAS, CMAE, and 
CRMSE. However, fixed-length tests exhibited a higher item exposure rate, which could be mitigated by 
selecting items with fewer dependencies on specific item parameters (a-parameters). On the other hand, 
variable-length tests demonstrated increased redundancy. Based on these results, CAT is recommended as 
an alternative approach for conducting NBTs due to its capability to accurately measure individual 
abilities and reduce the testing duration. For high-stakes assessments like the NBTs, fixed-length tests are 
preferred as they offer superior testing precision while minimizing item exposure rates. 

Keywords: Computerized adaptive testing; Fixed-length; Item exposure; Item response theory; Monte 
Carlo simulation; Measurement precision; SimulCAT software; Variable-length 
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1. Introduction 

Many parts of the world, including South Africa, had all physical gatherings, contacts, and 
educational activities suspended or severely curtailed due to the upsurge of the COVID-19 
pandemic worldwide. Consequently, the Centre for Educational Testing for Access and Placement 
[CETAP] had to scrap the 2020 National Benchmark Tests [NBTs] in South Africa during the 
lockdown that began on 27th March 2020. NBTs candidates were not allowed to access their 
examination venues across all provinces in the COVID-19 risk-adjusted strategy. Therefore, it was 
necessary to shift the assessment paradigm to off-site technologies. In response to these challenges, 
CETAP announced on 25th July 2020 a transition to a highly secure computer-based assessment 
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(CETAP, 2020).  Evidence showing the shift to computer-based tests came from a recent study by 
Sango et al. (2022), who demonstrated that NBTs have many restrictions that prevent them from 
being administered in a paper-based format, as they were before the COVID-19 pandemic. The 
study also submits that researchers do not anticipate ever returning to exclusively paper-based 
delivery, even if circumstances return to making paper delivery easier (Sango et al., 2022). 

In NBTs, students are tested on their ability to integrate academic and quantitative literacy 
[AQL] into tertiary courses (Frith & Prince, 2018; Prince et al., 2021; Sebolai, 2014). South African 
universities administer their NBTs in English and Afrikaans, and these include three multiple-
choice tests, including one that combines academic with quantitative literacy. Three hours are 
allotted to the AQL test, and scored separately (NBT, 2022; Prince et al., 2018). Furthermore, the 
mathematics [MAT] test is multiple-choice and takes three hours (NBT, 2022). The academic 
literacy [AL] test measures the ability of a candidate to communicate effectively in a medium of 
instruction conducive to academic study (Cliff & Yeld, 2006). Quantitative Literacy [QL] tests 
measure a candidate's ability to solve issues using fundamental quantitative knowledge presented 
vocally, visually, tabularly, or symbolically in a natural setting relevant to higher education (Frith 
& Prince, 2006). The NBT Mathematics test assesses a candidate's writing ability in the context of 
secondary school mathematics ideas relevant to higher education studies (CETAP, 2019).  

CETAP's swift action to continue to administer NBTs through technology-led solutions of 
computer-based tests [CBTs] should be applauded during the pandemic. Assessment of 
instructional effectiveness has been positively impacted by technology as computers are used to 
measure whether educational objectives have been met. Technology has been the primary building 
block of the 21st century (Asiyai, 2014). Technology gadgets are used in all areas of life, proving 
the rise of the digital age (Ando et al., 2016). It has been more than a century since large-scale 
standardized testing in the United States was implemented with giant testing services like 
Education Testing Service, Graduate Record Examination, and Pearson VUE (Moncaleano & 
Russell, 2018). The Computer Based Test [CBT] allows the outcome/s to be gathered, collated, 
recorded, and reported electronically (Alabi et al., 2012). Due to the conversion from paper to 
computer-based testing, CBT for educational assessments has transformed and made this process 
more technological (Educational Testing Services, 2014). As a result, the CBT can transfer paper-
based exams onto a computer screen and provide complete end-to-end assessment services for 
developing, managing, delivering, and growing programmes (Ogunjimi et al., 2021).  

1.1. Need to Shift from CBT to CAT Assessment 

Researchers are asking themselves - regarding African countries deploying this approach to 
educational assessment - to what extent they have been successful. Africa has seen an increase in 
CBT, but it is still not ubiquitous. In South Africa, candidates across provinces are required to take 
paper-pencil tests; the NBT continues to deploy both online and paper-pencil tests (Sango et al., 
2022). In contrast, many other large-scale testing programs in developed countries (Kimura, 2017; 
Veldkamp & Verschoor, 2019) have adopted computer-based tests. CBTs fall into two categories; 
one is known as conventional, linear, traditional tests, or computerized fixed-form tests [CFTs], 
which provide candidates with a pre-determined set of items. Candidates receive test items 
electronically instead of paper-and-pencil testing [PPT]. The second category is computer-based 
variable-form testing, which allows administrators to assign items at examination time rather than 
relying on items that are predetermined. A computer-adaptive test [CAT] (Weiss & Kingsbury, 
1984) and linear-on-the-fly testing [LOFT] (Luecht, 2005, 2016; Luecht & Sireci, 2011) are two 
widely-used variable-form approaches.  

Even though CFTs is the least sophisticated of the computer-based tests, it offers several 
advantages over PPT. Evidently, printing, storing, and distributing booklets, as well as collecting 
and scanning answer sheets, are no longer required. Consequently, CFT offers the advantage of 
facilitating the use of item formats not available with PPT, such as multimedia stimuli, and it can 
record information that is not available in PPT, such as the time it takes for a user to respond to an 
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item. Additionally, continuous access to tests is possible as opposed to routine administration 
restricted by logistical issues typically encountered with printed forms (Nandakumar & 
Viswanandhne, 2018). The item sequences can also be reshuffled, increasing security for each 
candidate. However, it is worth noting that one of the most recognizable advantages of the CBT is 
the availability of results immediately following the test (Oladele et al., 2020; Thompson & Weiss, 
2009).  

On the other hand, the computer-adaptive tests are the one in which the difficulty of 
subsequent questions changes as a result of how an examinee answers the previous question, as 
well as tests that use computers to administer and score non-branching linear tests (Scheuermann 
& Björnsson, 2009). This form of CBT is growing in popularity because it confers several 
advantages over linear or CFT forms, such as improving measurement efficiency, reducing 
administration time, and improving a person's estimated accuracy (Kantrowitz et al., 2011, as cited 
in Tsaousis et al., 2021). The number of items used in CAT systems is reduced by 50% versus linear 
or CFT evaluation methods (Flens et al., 2016). For Linacre (2000), a CAT system will enhance the 
validity of the assessment process, and its technique will reduce undesirable assessment 
phenomena, such as floor and ceiling effects, by reducing problems such as boredom, lack of 
motivation, attention deficits, and fatigue, which are sources of measurement errors (Seo, 2017; 
Tsaousis et al., 2021). In high–stakes tests such as NBTs, CAT systems may contribute to increased 
credibility by reducing measurement error and bias and improving the accuracy of the assessment 
(Oladele et al., 2023; Mills & Steffen, 2016). For instance, by tailoring tests to candidates' abilities, 
an irrelevant variance may be reduced. Ludlow and O'Leary (2019) found in PPT, respondents 
omitting responses for being too difficult resulted in higher measurement error levels. These 
individuals are called upon to respond only to items relevant to their levels of proficiency, 
adaptive testing is less likely to skip items. Kantrowitz et al. (2011) submit that the challenge of 
high-stakes tests, particularly those designed to assess cognitive abilities, is maintaining the quality 
of security necessary to ensure those test items are protected from being compromised. In 
numerous studies, it has been shown that two factors could diminish the validity of test scores by 
affecting the reliability and fairness of trait estimation (Chen & Lei, 2015): item exposure (i.e., how 
many times this item is used during the assessment process) and item overlap (i.e., how many 
items are used by more than one examinee at a time). In addition, one of the main components of 
testing security in the CAT system is item exposure, due to the fact that over time, items are 
reused, and items with high levels of exposure are more likely to be known than those with low 
exposure frequency. 

Compromising test security poses a serious threat to the validity and fairness of tests, as 
individuals with prior knowledge may handle items differently (Han, 2018b). Computerized 
Adaptive Testing systems employ various statistical indices and methods to monitor and control 
both phenomena, ensuring equitable testing conditions for all candidates (Oladele et al., 2020; 
Thompson & Weiss, 2011; Tsaousis et al., 2021). Additionally, to guarantee security benefits in 
CAT, a substantial item bank was initially thought necessary, with a suggested minimum of 1,000 
items. However, Monte Carlo simulations conducted by Thompson (2009) and expanded upon by 
Thompson and Weiss (2011) revealed that a more modest item bank of 500 items is effective. This 
discovery challenges the initial assumption, emphasizing the practicality of adopting CAT without 
the requirement for an extensive item bank. Although the development of the item pool may be 
time-consuming, and CAT implementation may demand more expertise, resources, and research 
(Moncaleano & Russell, 2018), Thompson and Weiss (2011) recommend simulation research for 
feasibility, applicability, and planning studies. 

1.2. Current Study 

Frequently used as an evaluative tool, NBTs assess students' academic preparedness and potential 
to enter higher education. However, due to its traditional fixed-form format, the NBT may have 
limitations in terms of measurement precision, efficiency, and fairness. To address these concerns, 
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our study explores the potential implementation of CAT for the NBT. The main objective is to 
improve the efficiency of the NBT through CAT by selecting test items based on each test-taker's 
estimated ability level. This involves evaluating the average number of administered items, 
reducing test duration, and enhancing the overall testing experience. Compared to fixed-form 
tests, we question whether CAT is better for test-taker abilities. To evaluate this, we conduct a 
simulation that compares the measurement precision of CAT with the current precision of the 
NBT. We investigate CAT's ability to provide reliable and valid estimates of test-taker abilities by 
adapting items at appropriate difficulty levels. In the simulation process, it is essential to examine 
item difficulty distribution, evaluate item discrimination, analyze fitting statistics, and assess the 
overall psychometric properties of the NBT's item bank. This critical step is necessary to assess the 
quality and effectiveness of the item bank within the CAT framework. This research aims to 
provide insights into the feasibility and potential advantages of implementing CAT for the NBT 
through a simulation study incorporating an item bank, ability estimation models, item selection 
algorithms, and evaluation metrics. The expected outcome of this study is that adopting CAT in 
the NBT may lead to improvements in assessment practices and higher education admissions 
outcomes. 

This paper follows the following structure: In Section 2, we reviewed existing literature on CAT 
systems and the underpinning theory. In section 3, we presented the methodology, including the 
context, the design (the Monte-Carlo simulation), and the data analysis method used. The 
simulation findings are reported in section 4. Section 5 discusses the implications of our findings, 
including identifying limitations and suggestions for future research. This paper concludes with 
section 6. 

2. Literature Review 

The item response theory [IRT] framework is currently used by most CAT systems. IRT is a set of 
algorithms that measure each item's characteristic on a scale, which corresponds to an individual's 
traits (Ayanwale, 2019; Ayanwale et al., 2022; van der Linden & Glas, 2010). In IRT models such as 
one-parameter (which looks at the difficulty -b of the item), two-parameter (which looks at the 
discrimination-a after item difficulty parameter is computed), three-parameter (which looks at the 
guessing-c in addition to b and a), and four-parameters (which looks at the carelessness-d in 
addition to b, a and c) the examinee's behaviour is taken into account at the item level (Ayanwale et 
al., 2018, 2019; Baker, 2004). By modelling at the item level, scores can be reported, and CAT can be 
developed more efficiently. The item statistics generated by IRT models do not depend with 
candidate samples and their statistics do not have to do with the items administered (Ayanwale & 
Adeleke, 2020; Baker, 2001; Baker & Kim, 2017). The assumptions allow test-taker results to be 
compared even if candidates took different test versions (Zanon et al., 2016). Central assumptions 
of IRT models are unidimensionality and local independence. An item set and/or an assessment 
are assumed to be unidimensional when a single latent trait (Ɵ) is measured, and local 
independence refers to when pairs of items are taken in a test, there is no statistical relationship 
between primary trait measured by the test conditioned (Ayanwale et al., 2020; Aybek, 2021; 
Aybek & Demirtasli, 2017). Both assumptions refer to the same data, while the third assumption 
involves a model of the relationship between item responses and the trait measured that implies 
the CAT system. 

2.1. CAT System Requirements 

There are five requirements in every CAT system (Thompson, 2007). These components can be 
implemented for specific purposes by choosing different options. The first component of the 
assessment is the item bank, which contains many calibrated items which cover a broad range of 
difficulties (i.e. −∞ to +∞) regarding the level of difficulty of the ability (or attribute) being 
measured (Thompson, 2011). The decision rule in the second component determines which item 
comes first. The starting items are usually based on an ability level Ɵ = 0 (i.e., the average ability 
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level) or a random item from the range between - 0.50 and +0.50 if the participant's previous ability 
level is unknown. Based on the item selection algorithm implemented by the computer system, the 
system selects items for the third component from a list of items suited for the participant's ability 
level. Accordingly, the algorithm selects the next item based on the test-takers' correct or incorrect 
response to the previous item. Maximum Fisher Information [MFI], a-stratification (with/without 
b-blocking), the interval information criterion [IIC], Kullback-Leibler information [KLI], Best 
matching b-value, Randomisation, Likelihood Information Criterion, Efficiency Balanced 
Information, and Gradual Maximum Information Ratio, are methods considered for item 
selection (Han, 2018a). Ogunjimi et al. (2012) describes the MFI method as the most popular and 
the most effective criterion for selecting items, whereas the MFI method begins with the item 
information function. To increase the chances of an item being selected, the information function 
should be as high as possible (Magis et al., 2017). A simple way to predict ability is by using the 
MFI criterion, which is very effective and easy to use. It is also noted that the standard error of this 
criterion is lower than those of any of the other criteria used in the study such as a-stratification, 
interval information criteria, likelihood weighted information criteria, Kullback–Leibler 
information, and the gradual information ratio (Deng et al., 2010). 

The fourth component describes the approach used to estimate ability levels. Generally, there 
are three standard methods for ability estimation: Maximum Likelihood Estimation with Fences 
[MLEF], Maximum Likelihood Estimation [MLE], and Bayesian models (Han, 2016). Maximum 
Likelihood Estimation with Fences [MLEF] allows for calculating responses based on a log-
likelihood function, which considers extreme response patterns that other estimation methods 
might miss. As a result, MLEF demonstrates minimal non-convergence and provides unbiased 
estimates regardless of test length (Han, 2018b). Previous studies (Cella et al., 2007; Seo, 2017; 
Veldkamp & Matteucci, 2013) have noted that applying Bayes' theorem enables the modeling of 
the conditional probability of item and person parameters given the data. This involves combining 
prior beliefs with a parametric model based on item and person parameter values. In contrast, 
Maximum Likelihood Estimation heavily relies on item quality and is evaluated based on its 
parameters. Van der Linden and Pashley (2009) explained that ML estimation may not yield finite 
estimates for response patterns with all items correct or all incorrect, which presents challenges, 
especially in the early stages of CAT administration with short test lengths (Han, 2018a; Oladele et 
al., 2022). Additionally, Maximum Likelihood methods that treat a person's abilities as fixed effects 
may lead to undesirable skewness, which can be addressed through bias correction methods 
(Robitzsch, 2021). To address these challenges, MLEF sets lower and upper bounds for theta 
estimation, truncating score estimation to fall within those bounds when the log-likelihood 
function fails to reach its peak with the dichotomous response pattern. Alternatively, Bayesian 
procedures enhance ability estimation by incorporating prior information on the distribution of the 
target population, reducing errors in item parameter estimation, especially for the discrimination 
parameter, particularly with small sample sizes (Cella et al., 2007; Olea et al., 2012). 

The fifth and final step involves the termination criterion, determining when the testing process 
should be concluded. This criterion can be based on standard error (variable length) or a fixed 
length test (specifying a certain number of items to be attempted). If a fixed length is specified, the 
testing process stops once that length is reached. Alternatively, to attain the desired level of 
measurement precision, the test should continue until the 'standard error' is achieved. The 
simulation study in Computerized Adaptive Testing reveals that users can meet a given criterion 
with varying numbers of items (Tsaousis et al., 2021; Zhang et al., 2019). Consequently, CAT, 
lacking thorough feasibility studies through simulation research at each stage of the development 
process, faces the risk of inefficiency. This renders its potential advantages meaningless and legally 
indefensible (Thompson & Weiss, 2011). 

The Monte Carlo simulation technique is efficient for evaluating a CAT system. The Monte 
Carlo configuration can simulate item and person parameters, including true item parameters 
(usually a, b and c), which provide helpful information in evaluating a newly developed 
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psychometric tool. The simulation studies are beneficial for testing and assessing CAT systems 
before implementing them on real data. CAT estimates are compared with those from the 
simulation study. An effective CAT implementation should have a high convergence rate (Aybek 
& Demirtasli, 2017). Therefore, the main goal of this study was to evaluate the practicality of 
incorporating Computerized Adaptive Testing for NBTs. The study specifically focused on 
examining the accuracy of fixed and variable-length tests as well as the impact of item exposure in 
CAT. The research questions can be summarized as follows: (a) How does the accuracy of fixed-
length tests compare to variable-length tests in the context of CAT for NBTs? (b) What effect does 
item exposure have on the practicality and effectiveness of CAT for NBTs? And (c) How does the 
implementation of CAT for NBTs contribute to advancements in assessment practices, particularly 
within the African context? SimulCAT software (Han, 2018b) was utilized to calculate various 
statistical indices, including the conditional BIAS statistic [CBIAS], the conditional mean absolute 
error [CMAE] statistic, and the conditional root mean square error [CRMSE] statistic. 

2.2. Previous Studies 

CAT has been extensively researched in various regions, as evidenced by studies such as Aybek 
(2021), Aybek and Demirtasli (2017), Burhanettin and Selahattin (2022), Choe and Fu (2018), Han 
(2016), Kantrowitz et al. (2011), Magis et al. (2017), Oladele et al., 2020, 2022; Ogunjimi et al. (2021), 
Mills and Steffen (2016), Thompson (2009), Thompson and Weiss (2011), Tsaousis et al. (2021), van 
der Linden and Glas (2010), and Wang and Kingston (2019). These studies collectively reinforce the 
validity and effectiveness of using CAT in educational and psychological assessments. Also, 
Thompson (2017) suggest that implementing simulated national CATs in the UK yields significant 
advantages over fixed tests, particularly in a formative educational setting. Shorter tests tailored to 
individual learners, with content suitable for their level, enhance learner engagement and provide 
a better overall learning experience. Additionally, the results of these tests can be processed more 
quickly, allowing for prompt review and discussion with the learner while their assessment 
experience is still fresh in their mind. In the realm of high-stakes exams, simulation techniques 
have been emphasized by scholars like Erdem Kara (2019) and Han and Kosinski (2016) as crucial 
for the development and evaluation of CATs. These techniques aid in assessing the effectiveness 
and reliability of CATs in such contexts, ensuring that they meet the required standards. 

3. Methodology 

3.1. Study Design  

The purpose of this study is to examine the precision of measurement in fixed and variable-length 
test designs when using the conventional computer adaptive testing item selection algorithm. The 
algorithm consists of three components: item selection criteria, and exposure controls, and it was 
developed by Han (2012). Several software packages are available for simulating CAT, including 
SimulCAT (Han, 2012), CATsim (Assessment Systems Corporation [ASC], n.d.), Firestar (Choi, 
2009), and WinGen (Han, 2007). Additionally, simulation can be performed using the catR package 
in the R programming language (Magis & Barrada, 2017; Magis & Raǐche, 2012), while the 
mirtCAT package (Chalmers, 2016) is specifically designed for developing live CAT applications. 
In this study, SimulCAT was selected for the NBTs feasibility analysis due to its suitability, despite 
not being a commercial CAT software. The primary objective of CAT is to provide the most 
efficient and informative items for each group of test-takers (Embretson & Reise, 2013). Different 
items are administered based on the varying proficiency levels of the candidates. Each item is 
utilized to estimate and update the ability level of the test-takers, and the subsequent item 
selection is based on this updated level. This process is repeated until specific stopping criteria are 
met (Erdem Kara, 2019). SimulCAT, being a Monte-Carlo simulation program, is well-suited for 
this study. Please refer to Table 1 for a detailed description of the simulated study design. 
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Table 1 simulated the random selection of 10,000 candidates using a normal distribution with 
different θ values for each time and 500 simulated item responses. Using a CAT simulation is an 
effective way to evaluate the performance of a CAT administration given the item pool 
distribution and examinee distribution.  

3.2. Data Analysis 

The measurement precision of the test program is an important aspect of CAT evaluation. In an 
evaluation of CAT system precision, several different indices were suggested (Han, 2018b). First, 
an index measuring CAT measurement precision is the BIAS statistic. Here we show the average 
difference between estimated and true θ across all candidates. The difference is calculated as 
follows: 

Bias =  
∑ (θî  − θi)I

i=1

I
     ……………….. Eqn. 1 

where I is the number of examinees who have taken the test. A summary statistic that measures 
the accuracy of the test is provided by this statistic. Additionally, we estimated a conditional BIAS 
(CBIAS) statistic because the characteristics of the tests may differ considerably across the range of 
θ (Han, 2018a). This statistic indicates the bias between the different ability levels (e.g., θ <-2, -2 ≤ θ 
< -1, -1 ≤ θ < 0, 0 ≤ θ < 1, 1 ≤ θ < 2, and θ ≥ 2), that is, the condition for theta. A second statistic that 
depicts the overall measurement error is the mean absolute error (MAE). The estimated θ differs 
from the true θ for all examinees. Additionally, the conditional MAE (CMAE) was calculated based 
on the means MAE values at each point in the θ range. The MAE statistic is computed as: 

MAE =  
∑ |θî  − θi|I

i=1

I
     ……………….. Eqn. 2 

Another useful statistic used in CAT for measurement precision is the root mean square error 
[RMSE]. Unlike previous ones, this statistic is based on the same ability scale θ, while the 
conditional RMSE [CRMSE] within each θ point was also estimated. Thus, the square of the bias 
and the square root of the result is estimated as follows: 

RMSE =   √∑ (θî  − θi)
2I

i=1

I
  …………….. Eqn. 3 

The last statistic for measurement precision is the standard error estimate [SEE] associated with 

a conditional estimate for different θ values [CSEE]. As shown below, the SEE is estimated as 

follows: 

SEE =   
1

√TIF
 ……………….. Eqn. 4 

Where TIF represents the test information function for the specific test form, each examinee 

completes. More importantly, using SEE statistics, CATs with variable-lengths are frequently 

terminated (Han, 2018a). 

4. Results 

For a 500-item pool with 50 items of fixed and variable length, the following item parameter 
estimates are presented in abridged Table 2. Based on the three-parameter logistic IRT framework, 
Table 2 shows the psychometric quality of simulated items for the fixed and variable lengths. The b 
values ranged from −2.99 to 2.99, with a mean of 0.11 and a standard deviation of 1.71, indicating 
the item pool covers a wide range of difficulty levels across the θ continuum (Baker, 2001, 2004). 
Across items, the discrimination parameters range from 0.50 to 1.19, with a mean of 0.85 and a 
standard deviation of 0.20, suggesting the items in the item pool adequately distinguished between 
low and high-ability test-takers (Baker, 2001; Baker & Kim, 2017). For the entire item pool, 
estimates of the c-parameter ranged from 0.00 to 0.34, with a mean of 0.17 and a standard 
deviation of 0.09, indicative of random guessing (Baker, 2001). 
 
  



M. A. Ayanwale & M. Ndlovu / Journal of Pedagogical Research, 0(0), 1-18    9 
 

 

 
 
 

Table 2 
Item parameters for item pool of fixed and variable length 
Item pool a b c 

1 0.88 −2.43 0.13 
2 0.66 −2.75 0.14 
3 0.73 0.12 0.20 
4 1.12 0.96 0.26 
5 0.74 0.35 0.25 
6 0.69 −0.89 0.11 
7 0.76 −1.94 0.16 
8 0.56 −2.49 0.19 
9 1.12 −0.63 0.16 
10 0.73 0.35 0.33 
+ + + + 
491 1.04 −0.21 0.12 
492 0.55 −1.04 0.30 
493 0.89 −1.77 0.20 
494 0.85 1.66 0.31 
495 0.52 −2.51 0.07 
496 0.68 2.23 0.27 
497 0.77 −1.58 0.14 
498 1.01 −0.76 0.22 
499 0.79 1.25 0.30 
500 1.05 1.76 0.01 

Mean 0.85 0.11 0.17 
SD 0.20 1.71 0.09 
Max. 0.50 −2.99 0.00 
Min. 1.19 2.99 0.34 
Note: a-Discrimination; b- Difficulty; c- Guessing; sd- Standard deviation; max- Maximum and min- Minimum. 

 

Next is the assessment of measurement precision for simulated adaptive tests that are fixed in 
length (i.e., 50) across various θ areas using statistics such as CBIAS, CMAE, and CRMSE.  These 
CAT system's statistics return mean CBIAS, a measurement of how well it recovers the true θ 
parameters, was -0.03440, very close to zero. Similar results were obtained for the mean of CMAE 
with 0.19046 and the CRMSE with 0.22680. Consequently, for different θ areas of the fixed test 
length, Table 3 presents the CBIAS, CMAE, and CRMSE scores, respectively. 

Simulation statistics for 50 items of fixed length are shown in Table 3. CBIAS across theta 
continuum showed systematic error was less than zero for the fixed test length, as shown in Figure 
1. A fixed test length is deemed adequate measurement precision because it can achieve zero 
systematic error.  Next, two similar measurements precision indices are displayed; Figure 2 
displays the CMAE along the theta continuum, summarising the overall measurement error for the 
fixed test length. While Figure 3 displays the CRMSE along the theta continuum for fixed-length 
tests, the smaller the CMAE values, the more accurate the CAT system. In addition, a closer look at 
Figures 2 and 3 shows a similar pattern, corresponding to higher levels of ability with greater rates 
of error. However, there appear to be a few very difficult items across the range of ability levels, 
which might prevent the CAT system from providing accurate ability estimates for the test-takers. 
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Table 3 
Fixed test length statistics for measurement precision 
Theta Area (Ɵ) Number of Cases  Test Length CBIAS       CMAE CRMSE 

−3.5 9 50 0.221 0.221 0.247 
−3 41 50 0.019 0.156 0.191 

−2.5 165 50 −0.016 0.151 0.187 
−2 435 50 0.002 0.159 0.201 

−1.5 872 50 −0.001 0.155 0.196 
−1 1524 50 −0.001 0.152 0.193 

−0.5 1953 50 −0.002 0.157 0.199 
0 1927 50 0.003 0.155 0.196 

0.5 1493 50 0.008 0.157 0.198 
1 890 50 0.007 0.152 0.192 

1.5 456 50 0.013 0.150 0.186 
2 178 50 0.017 0.166 0.207 

2.5 35 50 −0.017 0.157 0.206 
3 15 50 −0.210 0.210 0.243 

3.5 4 50 −0.559 0.559 0.560 
 

Figure 1 
Conditional BIAS across θ range for fixed length               

Figure 2 
Conditional MAE across θ range for fixed length        

 
 

Figure 3 
Conditional RMSE across θ range for fixed length 

 

 

Note. Graphical Figure [1] alt text: The CBIAS values on Y-axis were plotted against theta (θ) areas on the X-axis for the 
fixed test length. In the vicinity of zero, there was a more significant line for CBIAS; For the fixed test length, alt text 
Graphical Figure [2] plots CMAE values on Y-axis against theta areas on X-axis. There was a greater significance of 
CMAE values at positive sides of the theta area; Alt text Graphical Figure [3]: The CRMSE values were plotted along 
theta (θ) areas on the X-axis for the fixed test length. As shown in Figure 2, this curve/shape is very similar. 
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Furthermore, the CAT system's measurements precision statistics were examined for variable 
length. Across all θ areas of the variable-length test, the simulation results tightly controlled the 
Conditional Standard Error of Estimation [CSEE]. The CAT system's statistics return a mean 
CBIAS close to zero, which was -0.02767. For the CMAE, 0.259067 was obtained, and for the 
CRMSE, 0.3193. As a result, Table 4 provides CBIAS, CMAE, and CRMSE scores for different θ 
areas of the variable length. 

Table 4 
Variable-length statistics for measurement precision 
Theta Area (Ɵ) Number of Cases Test Length CBIAS CMAE CRMSE 

−3.5 9 23.67 0.270 0.270 0.323 
−3 41 20.05 0.121 0.215 0.274 

−2.5 165 18.76 0.058 0.233 0.288 
−2 435 19.31 −0.003 0.224 0.283 

−1.5 872 19.61 0.002 0.239 0.299 
−1 1524 19.97 0.004 0.240 0.301 

−0.5 1953 20.41 0.004 0.249 0.314 
0 1927 19.95 0.006 0.242 0.305 

0.5 1493 19.11 0.010 0.235 0.296 
1 890 19.02 0.001 0.255 0.317 

1.5 456 18.90 0.013 0.242 0.301 
2 178 18.74 0.013 0.225 0.281 

2.5 35 19.51 −0.068 0.171 0.229 
3 15 20.60 −0.261 0.261 0.307 

3.5 4 20.00 −0.585 0.585 0.591 

 

In Figure 4, the observed systematic error for the variable test length was also close to zero. 
However, it was greater than the fixed test length. It produces close results with a fixed length 
when measurement precision is as low as possible. Figure 5 shows CMAE across the theta 
continuum, highlighting an overall measurement error higher than that found for the fixed-length 
test. RMSE for the variable-length tests was consistent at 0.3, as shown in Figure 6. It appears that 
the fixed-length tests are more precise than the variable. Similarly, variable-length tests are longer 
than the typical ones and provide little precision improvement.  

Figure 4 
Conditional BIAS across θ range for variable length                        

Figure 5 
Conditional MAE across θ range for variable length        
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Figure 6 
Conditional MAE across θ range for variable length 

 
Note. Graphical Figure [4] alt text: CBIAS values of the variable test length are plotted against theta areas. Instances of 
zero are significantly higher for CBIAS; In alt text Graphical Figure [5], CMAE values are plotted against theta areas on 
Y-axis for the variable test length. When theta values were positive, CMAE values were more significant; Alt text 
Graphical Figure [6]: The CRMSE values were plotted along theta (θ) areas on the X-axis for the variable test length. It is 
very similar to the curve/shape shown in Figure 5. 

Next is the evaluation of fixed-length item exposure control. SimulCAT's item usage output file 
(*.scu) was used to determine the exposure profile. Seven thousand, three hundred and ninety-
seven (out of 10,000 test administrations/simulees) were considered the maximum observed item 
exposure rate for fixed length. This suggests that the randomesque method and its setting (one of 
the best five items) were not compelling enough, as more than two-thirds of the simulated 
candidates were exposed to the item, implying that it was overexposed. The fixed-length item pool 
also had 227 items not used (45.4%). Therefore, item exposure and item redundancy seem to be 
inversely related. A variable-length test would be more conclusive. 

Evaluation of variable test-length item exposure follows. Based on the item usage output file 
from SimulCAT, we investigated the item exposure profile and found the maximum observed 
item exposure rate was 6140 (out of 10,000 simulations). As with the fixed-length test, an item was 
overexposed when more than half of the simulated candidates saw it. Furthermore, 342 items 
(68.5%) of the 500 items that made up the variable test length were not used. With fixed-length 
tests, items were maximized better than with variable-length tests. More so, Figure 7 showed that 
the most discriminating value (a-values) were the items most preferred in CAT design studies 
(Han, 2018b). An alternative method for handling this issue is to switch from using the maximum 
fisher information method to using a b-matching approach, which does not consider a-values 
(Han, 2018a). A glance at Figure 8 shows item difficulty (b-values) in the pool; there was no 
shortage of items with various difficulty levels. 

5. Discussion and Implications 

The study delves into the feasibility and effectiveness of integrating Computerized Adaptive 
Testing into the National Benchmark Tests, employing the three-parameter logistic Item Response 
Theory framework. The examination of item psychometric characteristics reveals a diverse range 
of difficulty levels, affirming the comprehensive coverage of the item pool. Discrimination 
parameters further underscore the item pool's effectiveness in distinguishing between low and 
high-ability test-takers. This finding resonates with the observations made by Ogunjimi et al. 
(2021), indicating that when item parameter statistics fall within the specified range, it signifies a 
thorough representation of the theta level across all items in the item bank. In fixed-length tests, 
the CAT system demonstrates a commendable ability to recover true θ parameters with minimal 
systematic error (CBIAS close to zero). Low Cumulative Mean Absolute Error and Cumulative 
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Figure 7 
Item exposure by a-values                        

Figure 8 
Item exposure by b-values           

  
Note. A plot of variable test length item exposure against discriminating index values (a-slope) is shown in alt text 
Graphic Figure [7]. A skewed pattern of items was observed; Alt text Graphical Figure [8] plots variable test length item 
exposure values against the difficulty index (b-threshold). The distribution of items across the b-thresholds was normal.
  

Root Mean Square Error values reinforce the system's overall low measurement error, 
emphasizing the reliability of the CAT system in providing accurate ability estimates. This aligns 
with the fundamental objective of CAT, emphasizing precise and efficient measurement. The 
results of this study agree with those of Ogunjimi et al. (2021), Han (2018b), and Tsaousis et al. 
(2021) study indicating that fixed-length tests guarantee higher testing precision with a less than 
zero systematic error. 

In variable-length tests, the CAT system exhibits robust control over the Conditional Standard 
Error of Estimation. The CBIAS, CMAE, and CRMSE values affirm the system's accuracy and 
reliability in accommodating variable-length tests, reinforcing its adaptability and potential to 
optimize measurement precision across different ability levels. However, challenges emerge in 
fixed-length tests regarding item exposure, with overexposure observed in a significant proportion 
of simulated candidates. This highlights the need for meticulous item selection and exposure 
control in fixed-length CAT to ensure fair and reliable assessments. In contrast, variable-length 
tests showcase better control over item exposure, aligning with CAT's flexible nature and its ability 
to dynamically adapt the test length based on individual performance. This confirmed the 
conclusion of Ogunjim et al. (2021) and Burhanettin and Selahattin (2022) that fixed-length tests 
have a higher item exposure rate, which can be overcome by relying less on the accuracy 
parameter. 

Practical implications for NBT examination emerge from these findings. Designing adaptive 
tests that effectively control item exposure could enhance the precision of the NBT examination, 
dynamically adapting to individual abilities for optimized measurement accuracy and fairness. 
The insights into item psychometric properties and exposure patterns offer practical guidance for 
managing the item bank, emphasizing the importance of careful curation based on difficulty levels 
and discrimination parameters. Consideration of the trade-offs between fixed and variable-length 
tests becomes pivotal for NBT administrators. Balancing measurement precision, fairness, and 
practical considerations in test administration will be crucial in optimizing the effectiveness of the 
NBT examination. The study underscores the importance of continuous feasibility studies, 
particularly through simulation research, to evaluate the performance of the CAT system at each 
developmental stage. This ongoing assessment and refinement process contributes to the efficiency 
and effectiveness of CAT within the NBT context, providing valuable insights into the evolution of 
assessment practices, particularly within the African educational landscape. The integration of 
adaptive testing has the potential to enhance the precision and fairness of examinations like the 
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NBTs, contributing to the ongoing discourse on the advancement of educational assessments in the 
region. 

6. Conclusion, Limitations, and Future Work 

In conclusion, the findings of this study suggest that it would be beneficial to conduct a feasibility 
study for the purpose of providing practicable or informed benchmarks for the CAT specification 
in a real-life setting. Ultimately, the fixed-length method produced better measurement precision, 
and that is why it is recommended for high-stakes exams, such as the NBTs. More so, CATs have 
the potential to replace full-length measures in many situations. In addition to providing accurate 
results with a minimum amount of measurement error, this method reduces the number of items 
required to be administered. It is important, however, to acknowledge that this study has 
limitations. Using simulation techniques introduces assumptions and models that may not be fully 
representative of real-world testing conditions, and the findings may not be fully generalizable 
outside the specific context of the research. Further, the study only compared fixed-length and 
variable-length CAT designs, potentially omitting other variations and modifications. Researchers 
can explore additional variations in test design and investigate other components of CAT in future 
research. CAT-based assessments could also benefit from validation studies that examine the 
validity and reliability of different test designs. It would also be more comprehensive to evaluate 
measurement precision when empirical data is gathered from actual test administrations in real-
world situations and studies that look at the real-world implementation of CAT.  
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